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Abstract

Intensity interferometry and in particular that based on Bose}Einstein correlations (BEC) constitutes at
present the only direct experimental method for the determination of sizes and lifetimes of sources in particle
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and nuclear physics. The measurement of these is essential for an understanding of the dynamics of strong
interactions which are responsible for the existence and properties of atomic nuclei. Moreover, a new state of
matter, quark matter, in which the ultimate constituents of matter move freely, is within the reach of present
accelerators or those under construction. The con"rmation of the existence of this new state is intimately
linked with the determination of its space}time properties. Furthermore, BEC provides information about
quantum coherence which lies at the basis of the phenomenon of Bose}Einstein condensation seen in many
chapters of physics. Coherence and the associated classical "elds are essential ingredients in modern theories
of particle physics including the standard model. Last but not least besides this `applicativea aspect of BEC,
this e!ect has implications for the foundations of quantum mechanics including the understanding of the
concept of `identical particlesa. Recent theoretical developments in BEC are reviewed and their application
in high-energy particle and heavy-ion reactions is analysed. The treated topics include: (a) a comparison
between the wave-function approach and the space}time approach based on classical currents, which
predicts `surprisinga particle}anti-particle BEC, (b) the study of "nal state interactions, (c) the use of
hydrodynamics, and (d) the relation between correlations and multiplicity distributions. ( 2000 Elsevier
Science B.V. All rights reserved.

PACS: 13.85.!t; 25.75.Gz

Keywords: Bose}Einstein correlation; Quark}gluon plasma
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1. Introduction

The method of photon intensity interferometry was invented in the mid-1950s by Hanbury}
Brown and Twiss for the measurement of stellar dimensions and is sometimes called the HBT
method. In 1959}1960 G. Goldhaber, S. Goldhaber, W. Lee and A. Pais discovered that identical
charged pions produced in p6 }p annihilation are correlated (the GGLP e!ect). Both the HBT and
the GGLP e!ects are based on Bose}Einstein correlations (BEC). Subsequently Fermi}Dirac
correlations for nucleons have also been observed. Loosely speaking, both these correlation e!ects
can be viewed as a consequence of the symmetry (antisymmetry) properties of the wave function
with respect to permutation of two identical particles with integer (half-integer) spin and are thus
intrinsic quantum phenomena. At a higher level, these symmetry properties of identical particles
are expressed by the commutation relations of the creation and annihilation operators of particles
in the second quantisation (quantum "eld theory). The quantum "eld approach is the more general
approach as it contains the possibility to deal with creation and annihilation of particles and
certain phenomena like the correlation between particles and antiparticles can be properly
described only within this formalism. Furthermore, at high energies, because of the large number of
particles produced, not all particles can be detected in a given reaction and therefore one measures
usually only inclusive cross sections. For these reactions the wave-function formalism is impracti-
cal. Related to this is the fact that the second quantisation provides through the density matrix
a transparent link between correlations and multiplicity distributions. This last topic has been in
the centre of interest of multiparticle dynamics for the last 20 years (we refer among other things to
Koba}Nielsen}Olesen (KNO) scaling and `intermittencya). Furthermore, one of the most impor-
tant properties of systems made of identical bosons which is responsible for the phenomenon of
lasing is quantum statistical coherence. This feature is also not accessible to a theoretical treatment
except in "eld theory.

The present review is restricted to Bose}Einstein correlations which constitute by far the
majority of correlations papers both of theoretical and experimental nature. This is due to the fact
that BEC present important heuristic and methodological advantages over Fermi}Dirac correla-
tions. Among the "rst we mention the fact that quantum coherence appears only in BEC. Among
the second, one should recall that pions are the most abundantly produced secondaries in high-
energy reactions.

In the last few years there has been a considerable surge of interest in boson interferometry. This
can be judged by the fact that at present there is no meeting on multiparticle production where
numerous contributions to this subject are presented. Moreover, since 1990 [1] meetings dedicated
exclusively to this topic are organised; this re#ects the realisation that BEC on their own are an
important subject. This development is in part due to the fact that at present intensity inter-
ferometry constitutes the only direct experimental method for the determination of sizes and
lifetimes of sources in particle and nuclear physics. Since soft strong interactions which are
responsible for multiparticle production processes cannot be treated by perturbative QCD,
phenomenological approaches have to be used in this domain and space}time concepts are
essential elements in these approaches. That is why intensity interferometry has become an
indispensable tool in the investigation of the dynamics of high-energy reactions.

However, this alone could not explain the explosion of interest in BEC if one did not take into
account the search for quark}gluon plasma which has mobilised the attention of most of the
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1For a comparison of optical and particle physics intensity interferometry see e.g. [5].

nuclear physics and of an appreciable part of the particle physics community. For several reasons
the space}time properties of `"reballsa produced in heavy ion reactions are key to the process of
understanding whether quark matter has been formed.

The main emphasis of the present review will be on theoretical developments which took place
after 1989}1990. Experimental results will be mentioned only insofar as they illustrate the
theoretical concepts. For a review of older references see. e.g. the paper by Boal et al. [2]. In the
1990s the single most important theoretical event was in our view the space}time generalisation of
the classical current formalism. For a detailed presentation of this generalisation and its applica-
tions up to 1993 the reader is referred to Ref. [3]. For a review of experimental results in e`}e~
reactions see [4]. Finally a more pedagogical and more complete treatment of the theory of BEC
can be found in [5].

There are two categories of papers not mentioned: (i) Those which the reviewer was unaware of;
he apologises to the authors of these papers for this. (ii) Those which he considered as irrelevant or
as repetitions of previous work. The large number of papers quoted despite these restrictions shows
that an exhaustive listing of references on BEC is not trivial.

2. The GGLP e4ect

In the period 1954}1960 Hanbury}Brown and Twiss developed the method of optical intensity
interferometry for the determination of (angular sizes) of stars (see e.g. [6]). The particle physics
equivalent of the Hanbury}Brown}Twiss (HBT) e!ect in optics is the Goldhaber, Goldhaber, Lee
and Pais (GGLP) e!ect [7,8] which we shall describe schematically below.

However, when going over from optics to particle physics the following point has to be
considered: in particle physics one does not measure distances r in order to deduce (di!erences of)
momenta k and thus angular sizes, but one measures rather momenta in order to deduce distances.
This explains why GGLP were not aware of the HBT method.1

Up to a certain point there are two ways of approaching the theory of intensity interferometry:
the wave-function approach and the "eld theoretical approach. Although the "rst one is only
a particular case of the second one it is still useful because it allows sometimes a more intuitive
understanding of certain concepts and in particular that of the distinction between boson and
fermion correlations. We shall start therefore with the wave-function approach.

2.1. The wave-function approach

Let us consider for the beginning a source which consists of a number of discrete emission points
i each of which is characterised by a probability amplitude

F
i
(r)"F

i
d(r!r

i
) . (2.1)
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Let tk(r) be the wave function of an emitted particle. The total probability P(k) to observe
the emission of one particle with momentum k from this source is obtained by summing the
contributions of all points i. If this summation is done incoherently the single particle probability
reads

P(k)"+
i

DF
i
t(r

i
)D2 . (2.2)

Instead of discrete emission points consider now a source the emission points of which are
continuously distributed in space and assume for simplicity that the wave functions are plane
waves tk (r)& exp(ikr). The sum over x

i
will now be replaced by an integral and we have

P(k)"PDF(r)D2d3r . (2.3)

Similarly, the probability to observe two particles with momenta k
1
, k

2
is

P(k
1

k
2
)"PDt1,2

D2f (r
1
) f (r

2
) d3r

1
d3r

2
. (2.4)

Here t
1,2

"t
1,2

(k
1
, k

2
; r

1
, r

2
) is the two-particle wave function and we have introduced the

density distribution f"DFD2.
Suppose now that the two particles are identical. Then the two-particle wave function has to be

symmetrised or antisymmetrised depending on whether we deal with identical bosons or fermions.
Assuming plane waves we have

t
1,2

"(1/J2)[e*(k1
r
1`k

2
r
2 )$e*(k1

r
2`k

2
r
1)] (2.5)

with the plus sign for bosons and the minus sign for fermions. With this wave function one obtains

P(k
1
, k

2
)"D fI

I
(0)D2$D fI

I
(k

1
!k

2
)D2 . (2.6)

The incoherent summation corresponds to random #uctuations of the amplitudes F
i
.

Following the GGLP experiment [8] consider the space points x
1

and x
2

within a source,
so that each point emits two identical particles (equally charged pions in the case of GGLP) with
momenta k

1
and k

2
. These particles are detected in the registration points r

1
and r

2
so that in

r
1

only particles of momentum k
1

and in r
2

only particles of momentum k
2

are registered (see
Fig. 1). Because of the identity of particles one cannot decide which particle pair originates in
x
1

and which in x
2
.

Assuming that the individual emission points of the source act incoherently GGLP derived
Eq. (2.6) which for bosons leads to the second-order correlation function

C
2
(k

1
, k

2
),P

2
(k

1
, k

2
)/P

1
(k

1
)P

1
(k

2
)"1#D fI (q)D2 , (2.7)

where fI is the Fourier transform of f and q the momentum di!erence k
1
!k

2
.

Eq. (2.7) shows quite clearly how in particle physics momentum (correlation) measurements can
yield information about the space}time structure of the source.
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Fig. 1. The GGLP experiment schematically.

2See also [9,10] for an attempt to approach the issue of coherence and chaos by using wave packets.
3The use of the opening angle as a kinematical variable in BEC studies was readopted in Ref. [11] where it was

recommended as a tool for the investigation of "nal state interactions.
4For a reanalysis of the results of an older annihilation experiment see [13].

In the case of coherent summation one gets instead C
2
"1 (see e.g. [2]). We deduce from this

result (see also below) that coherence reduces the correlation and that a purely coherent source has
a correlation function which does not depend on its geometry.2

2.1.1. Newer correlation measurements in p6 }p annihilation
The original GGLP experiment [7] measured the correlation function in terms of the opening

angle3 of a pion pair.
The GGLP experiment has been repeated in the last few years at LEAR (see e.g. [12] where also

older references are quoted4). In these newer experiments the three momenta of particles were
measured, although one continued to use as a variable for the correlation function the invariant
momentum di!erence Q, as suggested already in [8].

One of the remarkable observations made in all annihilation reactions is that the intercept of the
second-order correlation function C

2
(k, k) appears consistently to exceed the canonical value of

2 reaching values up to 4. (This e!ect was possibly not seen in the original experiment [7] because
of the averaging over the magnitudes of the momenta.)

In [14] this e!ect was attributed to resonances while subsequently [15,12] a (non-
chaotic) Skyrmion-type superposition of coherent states was proposed as an alternative ex-
planation.

Another possible explanation of this intriguing observation may be that in annihilation pro-
cesses squeezed states (see Section 2.2) are produced, while this is not the case in other processes.
Indeed, it is known that squeezed states can lead to overbunching e!ects (see below). Furthermore,
as shown in Ref. [16], squeezed states may be preferentially produced in rapid reactions. Or,
according to some authors [15], annihilation is a more rapid process than other reactions
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5 In Ref. [16] the e!ect of chaotic superpositions of squeezed states in BEC was also studied. It is shown that such
a superposition always leads to overbunching, while pure squeezed states can lead also to antibunching.

occurring at higher energies. Given the importance of squeezed states, further experimental and
theoretical studies of this issue are highly desirable.5

2.1.2. Resonances, apparent coherence and other experimental problems: the j factor
It is known that in multiparticle production processes, an appreciable fraction of pions orig-

inates from resonance decays. Resonances act in opposite ways on the correlation function of pion
pairs. On the one hand, the interference between pions originating from short-lived resonances and
`directlya produced pions leads to a narrow peak in the second-order correlation function at small
values of q [17,18]. On the other hand, long-lived resonances give rise to pions which are beyond
the range of detectors and this leads to an apparent decrease of the intercept of the second-order
correlation function C

2
(k,k). These modi"cations of the intercept are important among other

things, because their understanding is essential in the search for coherence through the intercept
criterion. As mentioned already one of the most immediate consequences of coherence is the
decrease of the correlation function at small q.

Because of the large number of di!erent resonances produced in high-energy reactions a quantit-
ative estimate of their e!ects is possible only via numerical techniques. In Sections 4.9.1 and 5.1.3
we present a more detailed discussion of the in#uence of resonances on BEC within the Wigner
function formalism. For older references on this topic see also [2,19,20].

Another experimental di$culty is that, because of limited statistics or certain technical problems,
sometimes not all degrees of freedom can be measured in a given experiment. This leads to an
e!ective averaging over the non-measured degrees of freedom and hence also to an e!ective
reduction of the correlation function. As a matter of fact BEC experiments have shown from
the very beginning that the extrapolation of the correlation function to q"0 usually never led to
the maximum value C

2
(0)"2 permitted by Eq. (2.7).

To take into account empirically this e!ect experimentalists introduced into the correlation
function a correction factor j. Thus Eq. (2.7), e.g. was modi"ed into

C
2
(k

1
, k

2
)"1#jD fI (q)D2 . (2.8)

Because one initially thought that formally this generalisation o!ers also the possibility to
describe partially coherent sources, the corresponding parameter j was postulated to be limited by
(0,1) and called the `incoherencea factor; indeed j"0 leads to a totally coherent source and j"1
to a totally chaotic one. Unfortunately, this nomenclature is not quite correct, as explained below.
It should also be mentioned that there exists a strong correlation between the empirical values of
j and those of the `radiusa which enter fI (see e.g. [21] for a special study of this issue).

2.1.3. The limitations of the wave-function formalism
The wave-function formalism presented in the previous subsection has severe shortcomings:
(a) The correlation function (2.7) depends only on the di!erence of momenta q and not also on

the sum k
1
#k

2
, in contradiction with experimental data. Although we will see in Section 4.3 that

this limitation disappears automatically in the quantum statistical ("eld theoretical) approach, it
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6String models [22,23] also use a Wigner-type formalism. Here, it is postulated that there exists a `formationa time
q and therefore the particle production points are distributed around t2!x2"q2. This implies among other things
a correlation between particle production points and momenta.

can also be remedied within the "rst quantisation formalism by using the Wigner function
approach. In this approach the source function is from the beginning a function both of coordi-
nates and momenta and therefore the correlation function depends on k

1
and k

2
separately. There

is, of course, a price to pay for this procedure as it involves a semiclassical approximation.6
(b) The wave-function formalism may be useful when exclusive reactions are considered as was

the case, e.g. in the GGLP paper. Indeed t
1,2

in Eq. (2.5) is just the wave function of the two-boson
system, i.e. an assumption that two and only two bosons are produced is made. At low energies, i.e.
low average multiplicities, this condition can be satis"ed. However at high energies the identi"ca-
tion of all particles is very di$cult and up to now has not been done. Therefore, one measures
practically always inclusive cross sections. This means that instead of (2.5) one would have to use
a wave function which describes the two bosons in the presence of all other produced particles. To
obtain such a wave function one would have to solve the SchroK dinger equation of the many body,
strongly interacting system, which is not a very practical proposal. Related to this is the di$culty to
treat higher-order correlations within the wave-function formalism.

(c) The correlation function C
2

in the wave-function formalism is independent of isospin and is
thus the same for charged and neutral particles. We shall see in Section 4.4 that in a more correct
quantum "eld theoretical approach, this is not the case. This will a!ect among other things the
bounds of the correlations and will lead to quantum statistical particle}antiparticle correlations
which are not expected in the wave-function formalism.

(d) Coherence cannot be treated adequately (see below). The correlation functions derived in this
subsection refer in general to incoherent sources and attempts to introduce coherence within the
wave-function formalism are rather ad hoc parametrisations. However, coherence is the most
characteristic and important property of Bose}Einstein correlations among other things because it
is the basis of the phenomenon of Bose}Einstein condensates found in many chapters of physics,
like superconductors, super#uids, lasers, and the recently discovered atomic condensates [24]. It
would be very surprising if coherence would not be found also in particle physics given the fact that
the wavelengths of the emitted particles are of the same order as that of the sources. Furthermore,
as pointed out in this connection in [25] modern particle physics is based on spontaneously broken
symmetries. The associated "elds are coherent. That is why one of the main motivations of BEC
research should be the measurement of the amount of coherence in strong interactions. For this
purpose the formalism of BEC has to be generalised to include the presence of (partial) coherence
and this again can be done correctly only within quantum statistics, i.e. quantum "eld theory.

We conclude this subsection with the observation that the wave function or wave packet
approach may, nevertheless, be useful in BEC for the investigation of "nal state interactions (see
below) or for the construction of event generators, where phases or quantum amplitudes are
ignored anyway. Also, for correlations between fermions where coherence is absent the wave-
function formalism may be an adequate substitute, although here too a "eld theoretical approach is
possible.
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7By QS we understand in the following the density matrix formalism within second quantisation.
8A review of the applications of quantum optical methods to multiparticle production up to 1988 can be found in [26].

2.2. Quantum optical methods in BEC

In high-energy processes in which the pion multiplicity is large, we may in general expect the
methods of quantum statistics (QS)7 to be useful. For BEC in particular they turn out to be
indispensable. These methods have been applied with great success particularly in quantum optics
(QO), super#uidity, superconductivity, etc. What distinguishes optical phenomena from those in
particle physics are conservation laws and "nal state interactions which are present in hadron
physics. At high energies and high multiplicities the "rst are not important. Neglecting for
the moment the "nal state interactions also, QS reduces then to QO and we may take over the
formalism of QO to interpret the data on multipion production at high energies, provided we
consider identical pions. Given the general validity of QS (or QO), it is then clear that any model of
multiparticle production must satisfy the laws of quantum statistics and this has far reaching
consequences, independent of the particular dynamical mechanism which governs the production
process. The main tools in the QO formalism are de"ned below.8

Coherent states and squeezed coherent states: Coherent states DaT are eigenstates of the (one-
particle) annihilation operator a

aDaT"aDaT . (2.9)

Squeezed coherent states are eigenstates DbT
4

of the two-particle annihilation operator

b"ka#las (2.10)

with

DkD2!DlD2"1 , (2.11)

so that

bDbT
4
"bDbT

4
. (2.12)

One of the remarkable properties of these states which explains also their name is that for them the
uncertainty in one variable can be squeezed at the expense of the other so that

(*q)2
4
41/2u, (*p)2

4
5u/2 (2.13)

or vice versa. The importance of this remarkable property lies among other things in the possibility
to reduce quantum #uctuations and this explains the great expectations associated with them
in communication and measurement technology as well as their interest from a heuristic point
of view.

It has been found recently in [16] that squeezed states appear naturally when one deals with
rapid phase transitions (explosions). Indeed consider the transition from a system a to a system
b and assume that it proceeds rapidly enough for the relation between the creation and annihilation
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operators and the corresponding "elds in the two `phasesa to remain unchanged. Mathematically,
this process will be described by postulating at the moment of this transition the following relations
between the generalised coordinate q and the generalised momentum p of the "eld:

q"(1/J2E
b
)(bs#b)"(1/J2E

a
)(as#a) ,

(2.14)
p"iJ(E

b
/2)(bs!b)"iJ(E

a
/2)(as!a) ,

as, a are the free "eld creation and annihilation operators in the `phase aa and bs, b the correspond-
ing operators in the `phase ba. Eq. (2.14) holds for each mode p. Then we get immediately
a connection between the a and b operators,

a"b cosh r#bs sinh r ,
(2.15)

as"b sinh r#bs cosh r

with

r"r(p)"1
2
log(E

a
/E

b
) . (2.16)

Transformation (2.15) is just the squeezing transformation (2.10) with

k"cosh r, l"sinh r (2.17)

which proves the statement made above.
The observation of squeezed states in BEC may thus serve as a signal for such rapid transitions.

Furthermore, the existence of isospin induces in hadronic BEC certain e!ects which are speci"c for
squeezed states. This topic will be discussed in Section 4.4.

From the point of view of BEC what distinguishes ordinary coherent states from squeezed states
is the following: for coherent states the intercept C

2
(k, k)"1 while for squeezed states it can take

arbitrary values. In Fig. 2 one can see such an example.
Expansions in terms of coherent states. Coherent states form an (over)complete set so that an

arbitrary state D fT can be expanded in a unique way in terms of these states.
Of particular use is the expansion of the density matrix o in terms of coherent states. For a pure

coherent state the density operator reads

o"DaTSaD . (2.18)

For an arbitrary density matrix case we have

o"PP(a)DaTSaDd2a . (2.19)

Here P is a weight function which usually, but not always, has the meaning of a probability. The
normalisation condition for the density operator translates in terms of the P representation as

tro"PP(a) d2a"1 . (2.20)

Eq. (2.19) is called also the Glauber}Sudarshan representation.
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Fig. 2. Second-order correlation function C
2
(k, k),g(2) as a function of the squeezing parameter r for pure squeezed

states (from Ref. [27]).

The knowledge of P(a) is (almost) equivalent to the knowledge of the density matrix. However
in most cases the exact form of P(a) is not accessible and one has to be content with certain
approximations of it. Among these approximations the Gaussian form is privileged because:

(i) one can prove that P(a) is of Gaussian form for a certain physical situation which is frequently
met in many-body physics.

(ii) its use introduces an enormous mathematical simpli"cation.
Proposition (i) is the subject of the central limit theorem which states that if

1. the number of sources becomes large;
2. they are stationary in the sense that their weight function P(a) depends only on the absolute

value DaD;
3. they act independently,

then P(a) is Gaussian. These conditions are known to be ful"lled in most cases of optics and
presumably also in high-energy physics. Chaotic "elds and in particular systems in thermal
equilibrium are described by a Gaussian density matrix.

One of the reasons why the Gaussian form for P plays such an important part in correlation
studies is the fact that for a Gaussian P(a) all higher-order correlations can be expressed in terms of
the "rst two correlation functions (see e.g. Refs. [3,5]).

On the other hand, the coherent state representation is particularly important for correlation
studies because in this representation all correlation functions can be expressed in terms of the
creation and annihilation operators as and a of the "elds (particles). This follows from the Fourier
expansion of an arbitrary "eld in second quantisation

n(x)"+
k

[a
k
e~*kx#as

k
e*kx] . (2.21)

This property will be used extensively in Section 4.2 within the classical current formalism.
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9By strong interactions we mean here interactions for which perturbative methods are inapplicable. They are present
not only in hadronic physics but also in quantum optics.

10This property does not hold for other variables.

Correlation functions. The "rst-order correlation function reads

G(1)(x,x@),¹r[ons(x)n(x@)] . (2.22)

Higher (nth)-order correlation functions are de"ned analogously by

G(n)(x
12

x
n
,x

n`12
x
2n

),¹r[ons(x
1
)2ns(x

n
)n(x

n`1
)2n(x

2n
)] . (2.23)

In quantum "eld theory because of the mathematical complexity of the problem exact solutions
of the "eld equations are available only in special cases. One such case will be discussed later on.
However for strong interactions9 even for this case one has to use phenomenological parametrisa-
tions of the correlation functions and determine the parameters (which have a de"nite physical
meaning) by comparing with experiment.

In optics for stationary chaotic "elds two particular parametrisations are used:

1. Lorentzian spectrum:

G(1)(x
1
,x

2
)"Sn

#)
T e~@x1~x2 @@m . (2.24)

2. Gaussian spectrum:

G(1)(x
1
,x

2
)"Sn

#)
T e~@x1~x2 @

2@m2 , (2.25)

m is the coherence length in x-space and Sn
#)

T is the mean number of particles associated with the
chaotic "elds.

In [25] it has been proposed to use the analogy between time and rapidity in applying the
methods of quantum optics to particle physics. Indeed in optics processes are usually stationary in
time while in particle physics the corresponding stationary variable (in the rapidity plateau region)
is rapidity.10

Pure coherent or pure chaotic "elds are just extreme cases. In general one expects partial
coherence, i.e. a superposition of coherent and chaotic "elds

n"n
#0)%3%/5

#n
#)!05*#

. (2.26)

This leads for the Lorentzian case, e.g. to a second-order correlation function of the form

C
2
(x,x@)"1#2p(1!p) e~@x~x{@@m#p2 e~2@x~x{@@m , (2.27)

where p is the chaoticity, which varies between 0 (for purely coherent sources) and 1 (for totally
chaotic sources). Eq. (2.8) is seen to be a particular form of the above equation for j"p"1 and it
is clear herefrom that j does not describe (partial) coherence as its name would imply. The presence
of coherence introduces a new term into C

2
. However, it is remarkable that the number of free

parameters in Eq. (2.27) is the same as in Eq. (2.8). Formally, it appears as if there would act two
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11Eq. (2.27) is a special case of superposition of coherent and chaotic "elds; it can be considered as corresponding to
point-like coherent and chaotic sources and a momentum independent chaoticity; superpositions of more general
"nite-size sources are considered in Section 4.4 (Eq. (4.40)) and Section 4.8.

sources rather than one, but the `weightsa and the space}time characteristics of these two sources
are in a well-de"ned relationship.

This circumstance had been forgotten up to 1989 [28] both by experimentalists and theorists.
The reason for this is the fact that during the 1980s the wave-function formalism was dominating
the BEC literature, especially the experimental one.

From the foregoing discussion it should be clear that there are various reasons besides coherence
why the bunching e!ect in BEC is reduced. However, it should also be clear that the empirical
description of this state of a!airs through the j factor is possible only for totally chaotic sources.
Since in an experiment this is never known a priori, this implies that the "tting of data with
a formula of this type is misleading and should be avoided, the more so because the correct formula
(2.27) does not contain more free parameters than Eq. (2.8). In the example presented above these
free parameters are p and m for Eq. (2.27) and j and the e!ective radius (which enters in fI ) for
Eq. (2.8), respectively.

Using the rapidity}time analogy of Ref. [25] for a partially chaotic "eld the second-order
correlation function in rapidity is given by Eq. (2.27), with x being replaced by rapidity y.

The fact that the last two terms in Eq. (2.27) are in a well-de"ned relationship and depend in
a characteristic way on the two parameters p and m is a consequence of the superposition of the two
xelds (coherent and chaotic) and distinguishes a partially coherent source from a source which is
a superposition of two independent chaotic intensities. Because of this the form (2.27) was proposed
in [28] to be used as a signal for detection of coherence in BEC.11 As a matter of fact, an attempt in
this direction was made in an experimental study by Kulka and LoK rstad [29]. In this analysis BEC
data from pp and p6 p reactions at Js"53GeV were used to compare various forms of correlation
functions. Among other things one considered formulae of QO type for rapidity

C
2
"1#2p(1!p) e~@y1~y2 @@m#p2 e~2@y1~y2 @@m (2.28)

(corresponding to a Lorentzian spectrum) and

C
2
"1#2p(1!p) e~@y1~y2 @

2@m2#p2 e~2@y1~y2 @
2@m2 (2.29)

(corresponding to a Gaussian spectrum) as well as arbitrary superpositions of two chaotic sources
of exponential or Gaussian form, respectively.

C
2
"1#j

1
e~@y1~y2 @@m#j

2
e~2@y1~y2 @@m , (2.30)

C
2
"1#j

1
e~@y1~y2 @

2@m2#j
2

e~2@y1~y2 @
2@m2 . (2.31)

Here j
1

and j
2

represent arbitrary weights of the two chaotic sources.
Because of the limited statistics no conclusion could be drawn as to the preference of the QO

form versus the two-source form. Similar inconclusive results were obtained when one replaced
y
1
!y

2
in the above equations by the invariant momentum di!erence Q2"(k

1
!k

2
)2.
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2.2.1. Higher-order correlations
We have mentioned above that a characteristic property of the Gaussian form of density matrix

(not to be confused with the Gaussian form of the correlator or the Gaussian form of the
space}time distribution) is the fact that all higher-order correlation functions are determined just
by the "rst two correlation functions. Since all BEC studies in particle physics performed so far
assume a Gaussian density matrix, the reader may wonder why it is necessary to measure
higher-order correlation functions.

There are at least three reasons for this:
(i) The conditions of the applicability of the above theorem and in particular the postulate that

the number of sources is in"nite and that they act independently can never be ful"lled exactly.
(ii) In the absence of a theory which determines from "rst principles the "rst two correlation

functions, models for these quantities are used, which are only approximations. The errors
introduced by these phenomenological parametrisations manifest themselves di!erently in each
order and thus violate the above theorem even if (i) would not apply. Moreover, for certain
parametrisations of the correlation functions the phases of the chaotic and coherent amplitudes
disappear from the second-order correlation function (see Section 4.8) and are present only in
higher-order correlation functions.

(iii) In experiments, because of limited statistics and sometimes also because of theoretical biases
not all physical observables are determined, but rather averages over certain variables are
performed, which again introduce errors which propagate (and are ampli"ed) from lower-to-higher
correlations.

Conversely, by comparing correlation functions of di!erent order, one can test the applicability
of the theorem quoted above and pin down more precisely the parameters which determine the "rst
two correlation functions (e.g. the chaoticity p and the correlation length m in Eqs. (2.28) and (2.29)),
which is essentially the purpose of particle interferometry.

The phenomenological application of these considerations will be discussed in the following as
well as in Section 6.3 for the particular case of the invariant Q variable, but arguments (i)}(iii) have
general validity. It would be a worthwhile research project to compare the deviations introduced in
the relation between lower and higher correlation functions, due to (i) with those introduced by (ii)
and (iii).

The simpli"cation brought by the variable Q can be enhanced by a further approximation
proposed by Biyajima et al. [30]. With the notation Q

ij
"k

i
!k

j
the analogue of Eq. (2.29) can be

written

C
2
"1#2p(1!p) exp(!R2Q2

12
)#p2 exp(!2Q2

12
R2) . (2.32)

For the third-order correlation function one obtains

C
3
"1#2p(1!p)[expM!R2Q2

12
N#expM!R2Q2

13
N#expM!R2Q2

23
N]

#p2[expM!2R2Q2
12

N#expM!2R2Q2
13

N#expM!2R2Q2
23

N]

#2p2(1!p)[expM!R2(Q2
12

#Q2
23

)N#expM!R2(Q2
13

#Q2
23

)N

#expM!R2(Q2
12

#Q2
13

)N]#2p3[expM!R2(Q2
12

#Q2
13

#Q2
23

)N] . (2.33)
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Ref. [30] proposed to use symmetrical con"gurations for all two-particle momentum di!erences,
i.e. to consider Q

ij
independent of (i, j). For C

2
this assumption does not of course introduce any

modi"cations. However for higher orders the simpli"cation is important. Thus, e.g. for the
third-order correlation with Q

12
"Q

13
"Q

23
and with the de"nition Q2

5)3%%
"Q2

12
#Q2

13
#Q2

23
Eq. (2.33) becomes

C
3
"1#6p(1!p) expM!1

3
R2Q2

5)3%%
N#3p2(3!2p) expM!2

3
R2Q2

5)3%%
N

#2p3 expM!R2Q2
5)3%%

N . (2.34)

In Ref. [30] similar expressions for C
4

and C
5
, again for a Gaussian correlator, were given.

These relations for higher-order BEC were subjected to an experimental test in Ref. [31], using
the UA1 data for p6 p reactions at Js"630 and 900GeV. For reasons which will become clear
immediately, we discuss here this topic in some detail.

The procedure used in [31] for this test consisted in determining R and p separately for each
order q of the correlation and comparing these values for di!erent q. It was found that a Gaussian
correlator did not "t the data. Next in [31], one tried to replace the Gaussian correlator by an
exponential (see Eq. (2.28)). To do this one substituted simply in the expressions for the correlation
functions of Ref. [30] the factor exp(!R2Q2) with exp(!RQ). Such a procedure was at hand
given the fact that for C

2
the QO formulae both for an exponential correlator and a Gaussian

correlator were known [28] and their comparison suggested just this substitution, as seen from
Eq. (2.29).

In [31] one used then for the exponential correlator the relations

C%.1*3*#!-
2

"1#2p(1!p) exp(!RQ
12

)#p2 exp(!2Q
12

R) , (2.35)

C%.1*3*#!-
3

"1#6p(1!p) exp(!1
3
RQ

5)3%%
)#3p2(3!2p) exp(!2

3
RQ

5)3%%
)

#2p3 exp(!RQ
5)3%%

) . (2.36)

With these modi"ed formulae one still could not "nd in [31] a unique set of values p and R for all
orders of correlation functions. However now a clearer picture of the `disagreementa between the
QO formalism and the data emerged. It seemed that while the parameter p was more or less
independent of q, the radius R increased with the order q in a way which could be approximated by
the relation

R
q
"RJ1

2
q(q!1) . (2.37)

However in [32] it was shown that the "ndings of [31] and in particular Eq. (2.37) not only did
not contradict QS but on the contrary constituted a con"rmation of it. While Eq. (2.35) for the
second-order correlation function coincides with that derived in quantum optics for an exponential
spectrum, this is not the case with the expressions for higher-order correlations C%.1*3*#!-

q
(Eq. (2.36)). The formulae for C

3
, C

4
and C

5
corresponding in QS to an exponential correlator and

derived in [32] di!er from the empirical ones used in [31]. As an example we quote

C
3
"1#6p(1!p) exp(!(1/J3)RQ

5)3%%
)#3p2(3!2p) exp(!(2/J3)RQ

5)3%%
)

#2p3 exp(!J3RQ
5)3%%

) . (2.38)
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As observed in [32] and as one easily can check by comparing Eq. (2.36) with Eq. (2.38), one can
make the empirical formulae for C

q
used in [31] coincide with the correct ones, by replacing the

parameter R with a scaled parameter R
4

and the relation between R and R
4
, is nothing else but

R
4
"R

q
, where R

q
is given by Eq. (2.37). The fact that this happens for three di!erent orders, i.e. for

C
3
, C

4
and C

5
makes a coincidence quite improbable.

By empirically modifying the formulae of higher-order BEC for the exponential case, paper [31]
had explicitly violated QS and the `phenomenologicala relationship (2.37) between R and q just
compensated this violation.

The fact that this compensation and the "nal agreement between theory and experiment was not perfect is not
surprising and is discussed in [32]. Besides reasons (i)}(iii) mentioned above, one has to take into account the fact that the
QO formalism in which Eqs. (2.35) and (2.33) are based assumes stationarity in Q, i.e. assumes that the correlator depends
only on the di!erence of momenta k

1
!k

2
and not also on their sum. As mentioned already this condition is in general

not ful"lled in BEC. Furthermore, the parameter p, if it is related to chaoticity, is in general momentum dependent (see
Section 4.8). Also, the symmetry assumption, Q

i, j
independent of i, j, may be too strong. Besides these theoretical caveats,

there are also experimental problems, related to the fact that the UA1 experiment is not a dedicated BEC experiment and
thus su!ers from speci"c diseases, which are common to almost all particle physics BEC experiments performed so far.
Among other things, there is no identi"cation of particles (only 85% of the tracks recorded are pions), and the
normalisation of correlation functions is the `conventionala one, i.e. not based on the single inclusive cross sections as the
de"nition of correlation functions demands (see (2.7) and Section 4.11), but rather uses an empirically determined
`backgrounda ensemble.

In the mean time further theoretical and experimental developments took place.
On the theoretical side a new space}time approach to BEC was developed [3,33] which is more

appropriate to particle physics and which contains as a special case the QO formalism. In
particular, the two exponential features of the correlation function is recovered.

On the experimental side a new technique for the study of higher-order correlations was
developed, the method of correlation integrals which was applied [34] to a subset of the UA1 data
in order to test the above-quoted QO formalism. The "ts were restricted to second- and third-order
cumulants only. Again it was found that by extracting the parameters p and R from the second-
order data, the `predicteda third-order correlation, this time by using a correct QO formula,
di!ered signi"cantly from the measured one.

If con"rmed, such a result could indicate that the QO formalism provides only a rough
description of the data and that higher precision data demand also more realistic theoretical tools.
Such tools are the QS space}time approach to BEC presented in Section 4.3. A further, but more
remote possibility would be to look for deviations from the Gaussian form of the density matrix.
However, it seems premature to speculate along these lines given the fact that the procedure used to
test the relation between the second- and third-order correlation functions has to be quali"ed.
Indeed in [34] one did not perform a simultaneous "t of second- and third-order data to check the
QO formalism. Such a simultaneous "t appears necessary before drawing conclusions, because as
mentioned above (see (ii) and (iii)), the errors involved in `guessinga the form of the correlator, and
the fact that the variable Q does not characterise completely the two-particle correlation, limit the
applicability of the theorem which reduces higher-order correlations to "rst and second ones. As
a matter of fact, it was found [35] (see also Section 6.3) in a comparison of the QS space}time
approach with higher-order correlation data, that the second-order correlation data is quite
insensitive to the values of the parameters which enter the correlator, while once higher-order data
are used in a simultaneous "t, a strong delimitation of the acceptable parameter values results.
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12The fact that in [34] the correlations were normalised by mixing events rather than by comparing with the single
inclusive cross sections in the same event, as prescribed by the de"nition of the correlation functions may also in#uence
the applicability of the central limit theorem.

Thus there are several possible solutions if one restricts the "t to the second-order correlation and
the correct one among these can be found only by "tting simultaneously all correlations. If by
accident one chooses in a lower correlation the wrong parameter set, then the higher correlations
cannot be "tted anymore.12

Before ending these phenomenological considerations in which the variable Q played a major
part, a few remarks about its use may be in order.

The invariant momentum diwerence Q. BEC studies in particle physics use often a privileged
variable namely the squared momentum di!erence:

Q2"(k
1
!k

2
)2"(k

1
!k

2
)2!(E

1
!E

2
)2 . (2.39)

It owes its special role to the fact that it is a relativistic invariant and it has already been used in the
pioneering paper by GGLP [8]. It also has the advantage that it involves all four components of
the momenta k simultaneously so that the intercept of the correlation function C

2
(k, k) coincides

with C
2
(Q"0). Thus by measuring C

2
as a function of one single scalar quantity Q one gets

automatically the intercept. This is not the case with other single scalar quantities used in BEC like
y
1
!y

2
or k

M,1
!k

M,2
which characterise the intercept only partially.

On the other hand, Q su!ers from certain serious diseases which make its use for practical
interferometrical purposes questionable.

The "rst and most important de"ciency of Q is the fact that it mixes time and space coordinates:
the associated quantity R in the conventional parametrisation of the correlation function
C

2
"1#j exp(!R2Q2) is neither a radius nor a lifetime, but a combination of these, which

cannot be easily disentangled. Another de"ciency of Q, which is common to all single scalar
quantities is the circumstance that it does not fully characterise the correlation function. Indeed, the
second-order correlation function C

2
is in general a function of six independent quantities which

cannot be replaced by a single variable.
An improvement on Q was proposed by Cramer [36] with the introduction of coalescence

variables which constitute a set of three boost invariant variables to replace for, a pair of identical
particles, with the single variable Q. They are related to Q by Q2"2m2(C

L
#C2

T
#C2

R
), where

C
L
, C

T
, C

R
denote longitudinal, transverse and radial coalescence respectively, and m the mass of

the particle. They have the properties that C
L
"0 when y

1
"y

2
, C

T
"0 when /

1
"/

2
and

C
R
"0 when either m

1
"m

2
or k

1
"k

2
. Here m

i
is the transverse mass and / the azimuthal angle

in the transverse plane. It is shown in [36] that with these new variables a Lorentz invariant
separation of the space- and time-like characteristics of the source is possible, within the kinemati-
cal assumptions involved by the particular choice of the coalescence variables. This separation is
however rather involved. In [36] the coalescence variables are used for the introduction of
Coulomb corrections into second- and higher-order correlation functions.

Another way to compensate in part for the fact that one single variable does not characterise
completely the two-particle system, but which maintains the use of Q is, as explained above, to
consider higher-order correlations.
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13The reader interested in correlations between non-identical particles is referred to [2] for the period up to 1990; for
more recent literature see [37], where correlations in low energy heavy ion reactions are reviewed.

3. Final state interactions of hadronic bosons

One of the most important di!erences between the HBT e!ect in optics and the corresponding
GGLP e!ect in particle physics is that in the "rst case we deal with photons while in the second
case with hadrons.

While photons in a "rst approximation do not interact, hadrons do interact. This interaction has
two e!ects: (i) it in#uences the correlation between identical hadrons and (ii) it leads to correlations
also between non-identical hadrons.

This review deals only with correlations due to the identity of particles and in particular with
Bose}Einstein correlations. Therefore only e!ect (i) will be discussed.13

E!ect (i) is usually described in terms of "nal state interactions. In some theoretical studies (see
e.g. [38] and references quoted there) emission of particles at di!erent times is also treated as an
e!ective "nal state interaction.

From the BEC point of view the "nal states interaction constitutes in general an unwanted
background, which has to be subtracted in order to obtain the `truea quantum statistical e!ect on
which interferometry measurements are based. That this is not always a trivial task will be shown
in the following.

There are two types of "nal state interactions in hadronic interferometry: electromagnetic, traded
under the generic name of Coulomb interactions, and strong. Furthermore, one distinguishes
between one-body "nal state interactions and many-body "nal state interactions.

3.1. Electromagnetic xnal state interactions

The plane wave two-body function used in the considerations above (see Eq. (2.5)) applies
of course only for non-interacting particles.

As a "rst step towards a more general treatment consider charged particle interfero-
metry. As a matter of fact the vast majority of BEC studies, both of experimental and theoretical
nature, refer to charged pions. For two-particle correlations, we will have to consider the
interaction of each member of a pair with the charge of the source and the Coulomb inter-
action between the two particles constituting the pair. The "rst e!ect will a!ect primarily the
single-particle probabilities and is not expected to depend on the momentum di!erence q.
Attention has been paid so far mostly to the second e!ect, i.e. the modi"cation of the two-
particle wave function due to the Coulomb interaction between the two particles. While
initially, having in mind the Gamow formula, it was assumed that this e!ect is (for small
q values) quite important, at present serious doubts about these estimates have arisen. The
model dependence of corrections for this e!ect makes it almost imperative that experimental
data should be presented also without Coulomb corrections, so that it should be left to the
reader the possibility of introducing (or not introducing) corrections according to her/his
own prejudice.

R.M. Weiner / Physics Reports 327 (2000) 249}346 267



3.1.1. Coulomb correction and `overcorrectiona
As usual one separates the centre-of-mass motion from the relative motion. For the last one the

scattering wave function reads

u(r)P
r?=

e*kz#r~1g(h,/)e*kr , (3.40)

where the relative position vector r has polar coordinates r, h,/.
The form of the function g depends on the scattering potential. In the Coulomb case the

corresponding SchroK dinger equation can be solved exactly and the correction to the two-particle
wave function and the correlation function can be calculated. So far at least three sophisticated
procedures have been used for this purpose. In [39] the value of the square modulus of the wave
function u in the origin r"0 was proposed as a correction term G to the correlation function C

2
.

Up to non-interesting factors this is the Gamow factor which reads

Du(0)D2"2pg/(exp(2pg)!1)"G(g) . (3.41)

Here

g"amn/q (3.42)

and q"Dk
1
!k

2
D. mn is the pion mass.

However as pointed out by Bowler [40] and subsequently also by others, in BEC this approxi-
mation may be questionable. Indeed in a typical e`}e~ reaction, e.g. the source which gives
rise to BEC has a size of the order of 1 fm which is a large number compared with a typical
`Coulomb lengtha r

5
de"ned as the classical turning point where the kinetic energy balances the

potential Coulomb energy:

q8 2/2m
3%$

"e2/r
5
, (3.43)

where q8 "q/2 and m
3%$

is the reduced mass of the pion pair. For a typical BEC momentum
di!erence of q"100MeV, one gets from (3.43) r

5
"0.08 fm. This suggests that by taking the value

of the wave function at r"0 one overestimates the Coulomb correction.
More recently, Biyajima and collaborators [41] (see also [42]) have considered a further

correction to the correction proposed by Bowler, which decreases even more the Coulomb e!ect
and which is also of heuristic interest. In [41] it is pointed out that the wave function (3.40) used
by Bowler has not taken into account the symmetry of the two-particle system. It has to be
supplemented by an exchange term so that the r.h.s. of (3.40) becomes

(e*qz#e~*qz)#[ f (h,/)#f (p!h,/#p)]r~1e*qr . (3.44)

The corrections due to this new e!ect are of the same order as those found in [40] and go in the
same direction.

Another approach to the Coulomb correction in BEC has been suggested by Baym and
Braun-Munzinger [43]. Starting from the observation of [40] about the classical turning point
these authors propose the use for heavy ion reactions of a classical Coulomb correction factor
arising from the assumption that the Coulomb e!ect of the pair is negligible for separations less
than an initial radius r

0
. This model is tested by comparing its results with experimental data on
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14The measured n`n~ correlations were also used in two recent experimental papers [44,45] to estimate the Coulomb
correction. Why such a procedure is questionable is explained below.

15This assumption has to be quali"ed among other things because the "nal state strong interactions e!ects due to
resonances can also in#uence these correlations. Furthermore there also exists a quantum statistical correlation for the
n`n~ system (see Sections 4.4, 4.7 and 4.8) which, however may be weak.

16See however also Ref. [46] where rescattering is added to the classical Coulomb e!ect and where somewhat di!erent
results are obtained. It is unclear whether the strong position-momentum correlations implicit in this rescattering model
do not violate quantum mechanics.

n`n~,n~p,n`p correlations in heavy ion collisions14 (Au}Au at AGS energies). The assumption
behind this comparison is that the observed correlations are solely due to the Coulomb e!ect.15
Indeed qualitatively this seems to be the case: thus the data for the n`n~ and n~p correlations
show a bunching e!ect characteristic of an attractive interaction while the data for the n`p
correlation show an antibunching e!ect, characteristic of repulsion. After this test the authors
compare their correction with the Gamow correction and "nd that the last one is much stronger.
Wherefrom they also conclude that the Gamow factor overestimates quite appreciably the
Coulomb e!ect.16

An even stronger conclusion is reached by Merlitz and Pelte [47] from the solution of the
time-dependent SchroK dinger equation for two identical charged scalar bosons in terms of wave
packets. These authors "nd that the `expecteda Coulomb e!ect in the correlation function is
obliterated by the dispersion of the localised states and is thus unobservable. This makes the
interpretation of experimentally observed n`n~ correlations in terms of Coulomb e!ects even
more doubtful.

The theoretical studies of the Coulomb e!ect in BEC quoted so far are based on the solution of
the SchroK dinger equation and apply in fact only for the non-relativistic case. While one might argue
that the relative motion of two mesons in BEC is for small q non-relativistic, this is not true for the
single-particle distributions (see below). Therefore, in principle, one should replace the solution of
the SchroK dinger equation in the Coulomb "eld used above by the corresponding solution of the
Klein}Gordon equation. This apparently has not yet been done, with the exception of of a calcu-
lation by Barz [48] who investigated the in#uence of the Coulomb correction on the measured
values of radii. He found an important change of these radii due to the Coulomb "eld only for
momenta 4200MeV.

Finally, one must mention that the corrections of the wave function described above do not take into account the fact
that the charge distribution of a meson is not point like, but has a "nite extension of the order of 1 fm. This means that in
principle the SchroK dinger (or the Klein}Gordon) equation has to be solved with a Coulomb potential modi"ed by this
"nite size e!ect. Given the great sensitivity of BEC on small corrections in the wave function, this might be a worthwhile
enterprise for future research. As a matter of fact it is known from atomic physics (isotopic and isomeric shifts and
hyper"ne structure) that these "nite size e!ects lead to observable consequences.

Besides the wave function e!ect which in#uences the BEC due to directly produced particles or
those originating from short-lived resonances, one has to consider [40] the Coulomb overcorrec-
tion applied to pairs of which one particle is a daughter of a long-lived state. This e!ect may bias
the correction by up to 20%.

Coulomb correction for higher-order correlations. The Coulomb corrections discussed above were
limited to single- and two-body interactions. In present high-energy heavy ion reactions we have
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already events with hundreds of particles and in the very near future at the relativistic heavy ion
collider at Brookhaven (RHIC) this number will increase by an order of magnitude. Then
many-body "nal state interactions may become important. Unfortunately, the theory of many-
body interactions even for such a `simplea potential as the Coulomb one is apparently still
unmanageable. The long-range nature of the electromagnetic interaction does not make this task
simpler. Bowler [40] sketched a scenario for Coulomb screening based on the string model. In such
a model particles are ordered in space}time, so that, e.g. at least one n` must be situated between
the members of a n~n~ pair. While the net in#uence of this e!ect on n`n~ is expected to be small,
for a n~n~ pair the situation is di!erent, because instead of repulsion one obtains attraction. In the
case of long-range interactions such an e!ect may become important if the n`

1
propagates together

with the n~
2

n~
3

pair. This happens if Q
12

&Q
13

&Q
23

. To take care of this e!ect Bowler suggests
the replacement

C(Q
23

)PC(Q
23

)SC~1(Q
12

)C~1(Q
13

)T
k3

(3.45)

for the Coulomb n~n~ correction and

C(Q
12

)PC(Q
12

)SC~1(Q
23

)C(Q
13

)T
k3

(3.46)

for the Coulomb n`n~ correction. Here S2T
k3

symbolises averaging with respect to the mo-
mentum of particle 3. While on the average

SC~1(Q
23

)C(Q
13

)T
k3

(3.47)

is unity, at small Q the function C(Q) oscillates rapidly and therefore the factor

SC~1(Q
12

)C~1(Q
13

)T
k3

(3.48)

is sensitive to the distribution of Q
12

, Q
13

associated with the local source. According to [40] this
last factor for n`n~ pairs does not exceed 0.5% but for like-sign pairs no estimate is provided.

Coulomb and resonance ewect in single inclusive cross sections. At a "rst look one might be
tempted to believe that for single inclusive cross sections in heavy ion reactions the estimate of
Coulomb e!ects is straightforward. Unfortunately, this is not the case and so far there is no reliable
theoretical estimate of this e!ect. This is so because the produced charged secondaries do not move
simply in the electromagnetic "eld of the colliding nuclei but at the same time interact with all the
other secondaries. In view of this situation, recently an attempt has been made to put in evidence
experimentally the Coulomb e!ect in the single inclusive cross section of pions in heavy ion
reactions [49]. In this experiment an excess of negative pions over positive pions in Pb}Pb
reactions at 158AGeV was observed which the authors of [49] attributed to the Coulomb
interaction of produced pions with the nuclear "reball. However, this interpretation has been
challenged in [50] where, in a detailed hydrodynamical simulation it was shown that a similar
excess in the n~/n` ratio is expected as a consequence of resonance (especially hyperon) decays.
This quali"cation goes in the same direction as that mentioned above with respect to the
exaggeration of the e!ects of Coulomb interaction in BEC. It also illustrates the complexity of the
many-body problem of heavy ion reactions even for weak interactions like the electromagnetic one,
which in principle are well known.

270 R.M. Weiner / Physics Reports 327 (2000) 249}346



17For experimental estimates, see Ref. [51].
18That event generators are not a reliable source of information for this purpose was demonstrated in the case of

e`}e~ reactions in [57,58].
19 In Ref. [56] the weights were determined from thermodynamical considerations.

3.2. Strong xnal state interactions

This is a very complex problem because we are dealing with non-perturbative aspects of
quantum chromodynamics. That there is no fully satisfactory solution to this problem can be seen
from the very fact that we have at least three di!erent approaches to it. As will become clear from
the following, these di!erent approaches must not be used simultaneously, as this would constitute
double (or triple) counting which is also why a fourth solution proposed here which is of heuristic
nature will appear in many cases more appealing and more e$cient.

3.2.1. Final state interactions through resonances
The majority of secondaries produced in high-energy collisions are pions out of which a large

fraction (between 40% and 80%) arises from resonances.17 Since the resonances have "nite
lifetimes and momenta, their decay products are created in general outside the production region of
the `directa pions (i.e., pions produced directly from the source) and that of the resonances.
As a consequence, the two-particle correlation function of pions re#ects not only the geometry of
the (primary) source but also the momentum spectra and lifetimes of resonances [2]. Kaons are
much less a!ected by this circumstance [52]; however, correlation experiments with kaons are
much more di$cult because of the low statistics. For a more detailed discussion of kaon BEC see
Section 5.1.3.

The (known) resonances have been taken into account explicitly within the wave-function
formalism (see e.g. [17,53,18]), the string model [22,23] or within other variants of the Wigner
function formalism (see e.g. [19,54}56]). The drawback of this explicit approach is that it is rather
complicated, it is usually applicable only at small momenta di!erences q and it presupposes
a detailed knowledge of resonance characteristics, including their weights, which, with few excep-
tions, cannot be measured directly and have to be obtained from event generators18 or other
models.19

With these essential caveats in mind one "nds that the distortion of the two-particle correlation
function due to resonance decay leads to two obvious e!ects: (a) the e!ective radius of the source
increases, i.e., the width of the correlation function decreases, and (b) due to the "nite experimental
resolution in the momentum di!erence the presence of very long-lived resonances leads to an
apparent decrease of the intercept of the correlation function. E!ect (b) is particularly important if
one wants to draw conclusions from the intercept about a possible contribution of a coherent
component in multiparticle production.

In hydrodynamical studies of multiparticle production processes one considers resonances
within the Wigner function approach (see Section 5.1.3).

3.2.2. Density matrix approach
In Ref. [59] one describes the e!ect of strong "nal state interactions by constructing a density

matrix based on an e!ective Lagrangian of Landau}Ginzburg form as used in statistical physics
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and quantum optics (see also [60]). This is a more theoretical approach as it allows to study the
e!ect of the strength of the interaction g on BEC, albeit in an e!ective Lagrangian description.

One writes the density matrix

o"Z~1PdnDnTe~F(n)SnD, Z"Pdne~F(n) , (3.49)

where F is the analogue of the Landau}Ginzburg free energy and the integrals are functional
integrals over the "eld n. This "eld is written as a superposition of coherent n

#
and chaotic "elds

n
#)

:

n"n
#
(y)#n

#)
(y) . (3.50)

The variable y refers in particular to rapidity. The total mean multiplicity SnT is related to the "eld
n by

SnT"SDn2DT . (3.51)

Similar relations hold for the coherent and chaotic parts of n.
One assumes stationarity in y, i.e. the "eld correlator G(y, y@)"Sn(y)n(y@)T depends only on the

di!erence y!y@,*y. One writes the Landau}Ginzburg form for F as

F(n)"P
y

0

dyCan(y)#bK
Rn(y)
Ry K

2
#gDn(y)D4D , (3.52)

where a, b and g are constants. The strong interaction coupling is represented by g. The constants
a, b can be expressed in terms of Sn

#)
T and the `coherence lengtha m which is de"ned through the

correlator G (see Eq. (2.24)).
The main result of these rather involved calculations is that while the interaction does not play

any signi"cant role in the value of the intercept C
2
(0) it plays an important part in (C

2
(*yO0)).

This situation is illustrated in Figs. 3 and 4. Thus it is seen in Fig. 3 that all C
2

curves for various
g coincide in the origin. The e!ect of the interaction in this approach is similar to that of
(short-lived) resonances, i.e. it leads to a decrease of the width of the correlation function. The
sensitivity of C

2
on g suggests that the shape of the correlation function can, in principle, be used

for the experimental determination of g. One "nds furthermore that there is no g-dependence for
purely chaotic or purely coherent sources. This observation suggests that for a strongly coherent or
chaotic "eld the "nal state interaction does not manage to disturb the correlation.

Note that the curves in Fig. 4 intersect at some *y which depends on the chaoticity. This is
characteristic for correlations treated by quantum statistics, when one has a superposition of
coherent and chaotic "elds, and is a manifestation of the appearance of two (di!erent) functions in
the correlation function.

We recall (see Section 2.2) that for the particular case of a Lorentzian spectrum one gets, in the
absence of xnal state interactions,

C
2
(y, y@)"1#2p(1!p)e~@y~y{@@m#p2e~2@y~y{@@m (3.53)

instead of the empirical relation

C
2
(y, y@)"1#j exp(!Dy!y@D/m) . (3.54)
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Fig. 3. Second-order correlation function as given by the quantum statistical formalism of Ref. [59] for various values of
the coupling constant g for i"0.5 (from [59]). The parameter i is related to the chaoticity p via the relation
i"Sn

#
T/Sn

#)
T"1/p!1 where p"Sn

#)
T/SnT and n"n

#
#n

#)
is the total multiplicity. > is the maximum rapidity.

Fig. 4. The same as in Fig. 3 for various values of i at g"0 (from [59]).

20The separation between resonances and phase shifts is of course not rigorous because phase shifts re#ect also the
e!ect of resonances; however as long as phase shifts constitute a small e!ect, this should not matter.

As shown in Fig. 5 the parametrisation (3.54) leads to parallel curves for various values of j,
while the more correct parametrisation of Ref. [59] leads to intersecting curves. This is due to the
fact that the relation for C

2
derived in [59] contains as a particular case (for g"0) Eq. (3.53) and

retains the essential feature of Eq. (3.53), which consists in the superposition of two exponentials.

3.2.3. Phase shifts
For charged pions the strong "nal state interactions can also be described by phase shifts. It is

known that for an isospin I"2 state (this is the isospin of a system of two identically charged
pions) the corresponding strong interaction is repulsive. However it has been suggested [61] that
the range of strong interactions is smaller than the size of the hadronic source and therefore the
correlation should be essentially una!ected by this e!ect.20 Even for particle reactions like
hadron}hadron or e`}e~ the size of the source is of the order of 1 fm while the range of interaction
is only 0.2 fm. On the other hand, the e!ective size quoted above arises because of the joint
contribution to BEC of direct pairs and resonances. So it is interesting to analyse these two
contributions separately.
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Fig. 5. Second-order correlation function for various values of the `incoherencea parameter j as given by the
phenomenological equation (3.54).

Two identically charged pions are practically always produced together with a third pion of
opposite charge. Then according to Bowler [61] one has also to consider the I"0 attractive
interaction between the oppositely charged pions and this compensates largely for the I"2
state interaction. Thus it appears that also in particle reactions only resonances play an important
role in "nal state strong interactions.

The considerations about "nal state interactions made in this subsection treat separately
Coulomb and strong interactions. This is permitted as long as we deal with small e!ects or when
the ranges of the two types of interactions do not overlap. For very small distances this is not
anymore the case. Furthermore, the Gamow and the phase shift corrections are based on the
wave-function formalism which ignores the possibility of creating particles. However, when
entering the non-classical region the well-known di$culties of the wave-function formalism
become visible (Klein paradox). To consider this e!ect, in Ref. [62] the joint contribution of
the strong interaction potential and the Coulomb potential are analysed in a version of the
Bethe}Salpeter equation for spinless particles. It is found that as expected also from the consider-
ations presented above the strong interaction diminishes appreciably the Gamow correction.

3.2.4. Ewective currents
As will be explained below the most satisfactory approach to BEC is at present the classical

current approach, based on quantum "eld theory. Here three types of source characteristics appear:
the chaoticity, the correlation lengths/times and the space}time dimensions. It is obvious that these
quantities already contain information about the nature of the interaction and therefore it is quite
natural to consider them as e!ective parameters which describe all the e!ects of strong "nal state
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interactions. This suggests that rather than starting with `barea non-interacting currents and
introducing afterwards "nal state interactions, it might be preferable to assume from the beginning
that the currents as de"ned by the "eld theoretical formalism are `e!ectivea and therefore already
contain all "nal state interactions.

This approach to strong "nal state interactions is probably the most recommendable one at the
present stage for BEC in reactions induced by hadrons or leptons because it: (1) is simpler;
(2) avoids double counting; (3) avoids the use of poorly known resonance characteristics; (4) avoids
the use of the ill-de"ned concept of "nal state interactions for strong interactions. For heavy ion
reactions, when hydrodynamical methods are used the explicit consideration of resonances can be
practised up to a certain point without major di$culties and then the strong "nal state interactions
can be taken into account through these resonances (see Section 5.1.3).

To conclude this discussion of "nal state interactions in BEC, it is interesting to note that in
boson condensates the "nal state interactions might be di!erent than in normal hadronic sources.
In a condensate the Bose "eld becomes long range in con"guration space. This can be understood
as a consequence of the fact that in a condensate the e!ective mass of the "eld carrier vanishes.
Indeed a calculation [63] based on the chiral sigma model shows that the e!ective range of the pion
"eld can increase several times due to this e!ect.

4. Currents

4.1. Classical versus quantum currents

In Section 2.2 we were concerned mainly with the properties of "elds and did not ask the
question where these "elds come from. In the present section we shall pose this question and try to
answer it.

We start by recalling the de"nition of correlation functions within quantum "eld theory.
Let as

i
(k) and a

i
(k) be the creation and annihilation operator of a particle of momentum k, where

the index i labels internal degrees of freedom such as spin, isospin, strangeness, etc. The n-particle
inclusive distribution is

1
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where

du
*
"d3k

*
/(2p)32E

*
(4.2)

is the invariant volume element in momentum space. With the notation
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the general n-particle correlation function is de"ned as
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The particles which the operators as and a are associated with are the quanta of the "eld (which
we denote in general by /); these particles as well as the density matrix o refer to the "nal state
where measurements take place. On the other hand, we usually know (or guess) the density matrix
only in the initial state. Therefore, we have to transform the above expression so that eventually the
density matrix in the "nal state o

&
is replaced by the density matrix in the initial state o

*
, while the

"elds will continue to refer to the "nal state. To emphasize this we wrote in Eq. (4.1) o
&
. We have

o
&
"So

*
Ss , (4.5)

so that

G
1
(k)"(2p)(2E

1
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Ssas(k)a(k)SN , (4.6)
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2
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1
)a(k

1
)a(k

2
)SN . (4.7)

Thus, if the initial conditions i.e. o
*
are given, in principle the knowledge of the S matrix su$ces

to calculate the physical quantities of interest. In one case the S matrix can even be derived without
approximations. This happens when the currents are classical and we shall discuss this case in some
detail in this and the following section.

Before doing this, we shall consider brie#y the more general case when the currents are not
necessarily classical.

The S matrix is given by the relation

S"T expGiPd4x¸
*/5

(x)H , (4.8)

where the interaction lagrangian ¸
*/5

is a functional of the "elds /. T is the chronological
time-ordering operator; we shall use below also the antichronological time-operator TI .

Consider for simplicity a scalar "eld produced by a current J. Then

¸
*/5

(x),J(x)/(x) . (4.9)

Eqs. (4.8) and (4.9) allow us now to calculate the correlations we are interested in terms of the
currents after eliminating the "elds. One obtains thus

P
1
(k)"¹rMo
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Js
H
(k)J

H
(k)N , (4.10)

P
2
(k

1
, k

2
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1
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H
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)]T[J

H
(k

1
)J

H
(k

2
)]N , (4.11)

where the label H stands for the Heisenberg representation. Now the cross sections depend only on
the currents and the density matrix in the initial state. The appearance of the time ordering
operators T and TI in Eqs. (4.10) and (4.11) is a reminder of the fact that the current J is here an
operator.

4.2. Classical currents

Besides the fact that in this case an exact, analytical solution of the "eld equations is available
and that the limits of this approximation are quite clear, the classical current has the important
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21For multiparticle production processes this also implies a constraint on the multiplicity and/or the momenta k of the
produced particles.

advantage that in it the space}time characteristics of the source are clearly exhibited and thus
contact with approaches like the Wigner approach and hydrodynamics are made possible.

The assumption that the currents are classical implies that J is a c number and then the order in
Eq. (4.11) does not matter. This approximation can be used in particle physics when the currents
are produced by heavy particles (e.g. nucleons) and/or when the momentum transfer q is small
compared with the momentum K of the emitting particles.21 In Section 4.7 a new criterion for the
applicability of the classical current assumption in terms of particle}antiparticle correlations will
be presented.

The classical current formalism was introduced to the "eld of Bose}Einstein correlations in
[64,65,39]. In this approach, particle sources are treated as external classical currents J(x), the
#uctuations of which are described by a probability distribution PMJN.

From many points of view like, e.g. understanding the space}time properties of the sources or the
isotopic spin dependence of BEC this approach is superior to any other approach. This has become
clear only in the last years [33,3] when a systematic investigation of the independent physical
quantities which enter the dynamics of correlation functions has been made (see below).

The classical current formalism in momentum space is mathematically identical with the
coherent state formalism used in quantum statistics and in particular in quantum optics (see
Section 2.2), the classical currents in k-space J(k) being proportional to the eigenvalues of
the coherent states DaT. This explains the importance of the coherent state formalism for applica-
tions in particle and nuclear physics.

The density matrix is

o"PDJPMJNDJTSJD , (4.12)

where the symbol DJ denotes an integration over the space of functions J(x), and the statistical
weight PMJN is normalised to unity,

PDJPMJN"1 . (4.13)

(The reader will recognise in Eq. (4.12) the P-representation introduced in Section 2.2.)
Expectation values of "eld operators can then be expressed as averages over the corresponding

functionals of the currents, e.g.,
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)T . (4.14)

In the following, we shall discuss the special case where the #uctuations of the currents J(x) are
described by a Gaussian distribution PMJN. The reasons for this choice are given in Section 2.2.
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22We refer here to short range correlations. See Section 6.1.3 for a distinction between short- and long-range
correlations.

23For systems in local equilibrium Makhlin and Sinyukov [66] introduced a length scale (called in [67] `length of
homogeneitya) which characterises the hydrodynamical expansion of the source and can be di!erent from the size of the
system. Further references on this topic can be found, e.g. in [68,69].

As in quantum optics we write the current J(x) as the sum of a chaotic and a coherent
component

J(x)"J
#)!05*#

(x)#J
#0)%3%/5

(x) (4.15)

with

J
#0)%3%/5

(x)"SJ(x)T , (4.16)

J
#)!05*#

(x)"J(x)!SJ(x)T . (4.17)

By de"nition, SJ
#)!05*#

(x)T"0. The case SJ(x)TO0 corresponds to single-particle coherence.
The Gaussian current distribution is completely determined by specifying its "rst two moments:

the "rst moment coincides, because of Eq. (4.17), with the coherent component,

I(x),SJ(x)T (4.18)

and the second moment is given by the 2-current correlator

D(x,x@),SJ(x)J(x@)T!SJ(x)TSJ(x@)T"SJ
#)!05*#

(x)J
#)!05*#

(x@)T . (4.19)

4.3. Primordial correlator, correlation length and space}time distribution of the source

We come now to a more recent development [33,3] of the current formalism which has shed new
light on both fundamental and applicative aspects of BEC.

There are two in principle independent aspects of physics which come together in the phenom-
enon of BEC in particle and nuclear physics. One refers to the geometry of the source and goes back
to the original Hanbury}Brown and Twiss interference experiment in astronomy. The `geometrya
is characterised by the size of the source, e.g. the longitudinal and transverse radius R

,
and R

M
,

respectively, and the lifetime of the source R
0
.

The second aspect is related to the dynamics of the source and is expressed through correlation
lengths. In the following, we will use two correlation lengths ¸

,
, ¸

M
and a correlation time ¸

0
.22 As

a consequence of the "nite space}time size of sources in particle physics one cannot in general
separate the geometry from the dynamics in the second- (and higher-)order correlation function.
This separation is possible (see below) only by using simultaneously also the single inclusive cross
Section [33].23

Assuming Gaussian currents, one may take the point of view that the purpose of measuring
n-particle distributions is to obtain information about the space}time form of the coherent
component, I(x), and of the correlator of the chaotic components of the current, D(x,x@). In practice,
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because of limited statistics it is necessary to consider simple parametrisations of these quantities,
and to use the information extracted from experimental data to determine the free parameters
(such as radii, correlation lengths, etc.).

The approach considered in [3] di!ers in some fundamental aspects from those appli-
cations of the density matrix approach in particle physics which are performed in momentum
(rapidity) space and are limited usually to one dimension (see however [70] where rapidity and
transverse momentum were considered). The approach of Ref. [3] is a space}time approach in
which the parameters refer to the space}time characteristics of the source. This approach has
important heuristic advantages compared with the momentum (rapidity) space approach as
explained below.

Among other things, in the quantum statistical (QS) space}time approach the parameters of the
source as de"ned above can be considered as e!ective parameters which contain already the entire
information which one is interested in and which one could obtain from experiment, and thus
distinguishing between directly produced particles and resonance decay products could amount to
double counting. The apparent proliferation of parameters brought about by the QS approach is
compensated by this heuristic and practical simpli"cation. Furthermore, a new and essential
feature of the approach of Ref. [3] as compared with previous applications of the current formalism
[65,39] which assume ¸"0, is the xnite correlation length (time) ¸. This fact has important
theoretical and practical consequences. It leads among other things to an e!ective correlation
between momenta and coordinates, so that, e.g. the second-order correlation functions depend not
only on the di!erence of momenta q"k

1
!k

2
but also on the sum k

1
#k

2
. This non-stationarity

property, which is observed in experiment, is usually associated with expanding sources and treated
within the Wigner function formalism. However from the considerations presented above it follows
that expansion is in general not a necessary condition for non-stationarity in q. It will be shown
how expanding sources can be treated without the Wigner formalism, which restricts unnecessarily
the applicability of the results to small q values (see Section 4.8).

The distinction between correlation lengths and radii is possible only in the current formalism;
the Wigner formalism provides just a length of homogeneity.

The results which follow from the space}time approach [3] include:
(i) The existence of at least 10 independent parameters that enter into the correlation function;
(ii) new insights into the problem of partial coherence;
(iii) isospin e!ects: n0n0 correlations are di!erent from nBnB correlations; there exists a quantum

statistical (anti)correlation between particles and antiparticles (n`n~ in this case). These e!ects are
associated with the presence of squeezed states in the density matrix, which in itself is a surprising
and unexpected feature in conventional strong interaction phenomenology.

It turns out that soft pions play an essential role in the experimental investigation of BEC,
both with respect to the e!ect of particle}antiparticle correlations as well as in the investi-
gation of the coherence of the source. Depending on the relative magnitude of the parameters
of the coherent and chaotic component, soft particles can either enhance or suppress the coherence
e!ect.

Consider "rst the case of an in"nitely extended source. The correlation of currents at two
space}time points x and y is described by a primordial correlator

SJ(x)J(y)T
0
"C(x!y) . (4.20)
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24These correspond to the `coherence lengthsa used in the quantum optical literature.
25 Indeed one may hope that for strongly interacting systems lattice QCD may provide in future the correlation

length ¸.

Note that C depends only on the di!erence x!y. The correlator C(x!y) contains some
characteristic length (time) scales ¸, the so-called correlation lengths (times).24 In the current
formalism used in [39] ¸"0.

C(x!y) is a real and even function of its argument. In the rest frame of the source, it is usually
parametrised by an exponential,

C(x!y)"C
0

exp[!Dx
0
!y

0
D/¸

0
!Dx!yD/¸] (4.21)

or by a Gaussian,

C(x!y)"C
0

exp[!(x
0
!y

0
)2/2¸2

0
!(x!y)2/2¸2] . (4.22)

However, it should be clear that in principle any well-behaved decreasing function of (x!y) is
a priori acceptable, and in practice it is usually up to the experimenter to decide which particular
form is more appropriate. Ansatze (4.21) and (4.22) need to be modi"ed for the case of an expanding
source (see Sections 4.8 and 4.9) where each source element is characterised not only by a correla-
tion length ¸k but also by a four-velocity uk. As a matter of fact, the form of the function C is
irrelevant as long as one is interested in the general statements of the theoretical quantum
statistical (current) formalism. In practical applications, of course, in order to obtain concrete
information about the source and the medium (i.e., about ¸) the form of C has to be speci"ed. In
principle, a full dynamical theory is expected to determine the functional form of the correlation
function; however at present this `fundamentalista approach is not applicable.25 One uses instead
a phenomenological approach like that re#ected in Eqs. (4.21) and (4.22).

E!ects of the geometry of the source are taken into account by introducing the space}time
distributions of the chaotic and of the coherent component, f

#)
(x) and f

#
(x), respectively. The

expectation values of the currents, I(x) and D(x,x@), take non-zero values only in space}time regions
where f

#
and f

#)
are non-zero. Thus, one may write

I(x)"f
#
(x) , (4.23)

D(x,x@)"f
#)

(x)C(x!x@) f
#)

(x@) . (4.24)

We turn now to an important new aspect of the current approach.

4.4. Production of an isospin multiplet

Following [3] we generalise the previous results to the case of an isospin multiplet and derive
explicit expressions for the single inclusive distributions and correlation functions of particles that
form an isotriplet (such as the n`,n~ and n0-mesons). For the sake of de"niteness, we will refer to
pions in the discussion below, but it should be understood that the formalism is applicable to an
arbitrary isomultiplet.
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Consider the production of charged and neutral pions, n`,n~ and n0, by random currents. The
initial interaction Lagrangian is written

L
*/5

"J
`

(x)n~(x)#J
~

(x)n`(x)#J
0
(x)n0(x) . (4.25)

The current distribution is completely characterised by its "rst two moments. They read for the
case of an isotriplet

I
i
(x),SJ

i
(x)T, i, i@"#,!, 0 ,

D
ii{

(x,x@),SJ
i
(x)J

i{
(x@)T!SJ

i
(x)TSJ

i{
(x@)T . (4.26)

Invariance of the chaotic 2-current correlator under rotation in isospin space implies

D
00

(x,x@)"D
`~

(x, x@),D(x,x@) ,

D
``

(x, x@)"D
~~

(x,x@)"D
`0

(x,x@)"D
0~

(x,x@)"0 . (4.27)

The corresponding current distribution is

PMJ
i
N"(1/N) exp[!AMJ

i
N] (4.28)

where in coordinate representation

N"PPPDJ
`
DJ

~
DJ

0
exp[!AMJ

i
N] , (4.29)

and

AMJ
i
N"PPd4xd4yC(J`

(x)!I
`

(x))M(x, y)(J
~

(y)!I
~

(y))

#

1
2
(J

0
(x)!I

0
(x))M(x,y)(J

0
(y)!I

0
(y))D (4.30)

with

M(x,x@)"D~1(x,x@) . (4.31)

For the general case of a partially coherent source, the single inclusive distributions of pions of
charge i (i"#,!, 0) can be expressed as the sum of a chaotic component and a coherent
component,

(1/p)dpi/du"(1/p)dpi/duD
#)!05*#

#(1/p)dpi/duD
#0)%3%/5

(4.32)

with

(1/p)dpi/duD
#)!05*#

"D(k, k) , (4.33)

and

(1/p)dpi/duD
#0)%3%/5

"DI(k)D2 . (4.34)
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In general, the chaoticity parameter p will be momentum dependent,

p(k)"D(k, k)/(D(k, k)#DI(k)D2) . (4.35)

To write down the correlation functions in a concise form, one introduces the normalised current
correlators

d
rs
"D(k

r
, k

4
)/[D(k

r
, k

r
) )D(k

4
, k

4
)]1@2, dI

rs
"D(k

r
,!k

4
)/[D(k

r
, k

r
) )D(k

4
, k

4
)]1@2 , (4.36)

where the indices r, s label the particles. Note that dI is the same function as d but for the change of
sign of one of its variables. One may express the correlation functions in terms of the magnitudes
and the phases of the correlators:

¹
rs
,¹(k

r
, k

4
)"Dd(k

r
, k

4
)D, ¹I

rs
,¹I (k

r
, k

4
)"DdI (k

r
, k

4
)D ,

(4.37)
/#)
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,/#)(k

r
, k

4
)"Arg d(k

r
, k

4
), /I #)

rs
,/I #)(k

r
, k

4
)"Arg dI (k

r
, k

4
)

and the phase of the coherent component

/#
r
,/#(k

r
)"Arg I(k

r
) . (4.38)

The same notation will be used for the chaoticity parameter

p
r
,p(k

r
) . (4.39)

The two-particle correlation function is

C``
2

(k
1
, k

2
)"1#2Jp

1
(1!p

1
) ) p

2
(1!p

2
)¹

12
cos(/#)

12
!/#

1
#/#

2
)#p

1
p
2
¹2

12
. (4.40)

In [3] higher-order correlation functions up to and including order 5 are given.
In the absence of single-particle coherence the two-particle correlation functions for di!erent

pairs of n`,n~,n0 mesons read

C``
2

(k
1
, k

2
)"1#Dd

12
D2, C`~

2
(k

1
, k

2
)"1#DdI

12
D2 ,

(4.41)
C`0

2
(k

1
, k

2
)"1, C00

2
(k

1
, k

2
)"1#Dd

12
D2#DdI

12
D2

These results [71] were surprising in that they disagreed with some of the preconceived notions
on Bose}Einstein correlations. For instance, it was commonly assumed that without taking
into account "nal state interactions and in the absence of coherence, the maximum of the
two-particle correlation of identical pions is 2 (for k

1
"k

2
). It was also assumed that there

are no correlation e!ects among di!erent kinds of pions because these particles are not identical.
(This last assumption is even sometimes used in normalising the experimental data on CBB

2
with

respect to C`~
2

.)
Results (4.41) show that these assertions are not necessarily true. In particular, looking at the two

pion correlations one can see that in addition to the familiar correlations of identical particles
(the terms Dd

12
D2) there are particle}antiparticle } in this case, n`n~ } correlations (the terms DdI

12
D2).

The n0 has both terms, as it is identical with its antiparticle. Essentially, this last fact is the

282 R.M. Weiner / Physics Reports 327 (2000) 249}346



26Because of their larger mass as compared with that of pions, these e!ects may be even more quenched than in the
case of pions, except for sources of very short lifetime (see Section 4.8).

27The analysis in the preceding subsections referred to the production of an isotriplet assuming just the symmetry
between the isospin components (see Eq. (4.25)) of the current. In principle, for strong interactions the conservation of
isospin I must also be considered. While the chaotic part is not a!ected by this condition, the coherent component is
in#uenced by conservation of isospin [74]. In particular, this can lead to an additive positive term in the correlation
function and thus to an increase of the bounds of BEC for pions. It remains to be seen whether this e!ect can be
distinguished from the e!ect of long-range correlations (see Section 6.1.3). Moreover in hadronic reactions and in
particular those involving nuclei such an e!ect would be suppressed because of the following circumstance. The initial
state has to be averaged over all components of isospin I which is a "rst `dilutinga factor. Furthermore, the e!ect is
appreciable only for low total isospin. This total isospin has to be shared by the chaotic component I

#)
and the coherent

component I
#
: I"I

#
#I

#)
. The "rst one arises mostly from resonances with di!erent isospin values, so that even if the

total isospin takes its minimum value (I"0), I
#)

and therefore I
#

can take larger values.

explanation for the appearance of the &&surprising'' e!ects. Obviously it is a speci"c quantum "eld
e!ect. It will be shown in Section 4.8, that for soft pions and for small lifetimes of the source the
terms DdI

12
D2 can in principle become comparable with the conventional terms Dd

12
D2. This implies

that the distribution C00
2

(k
1
, k

2
) of two neutral pions can be as large as 3, and the maximum value

of C`~
2

is 2 (instead of 1). The corresponding limit of C000
3

is 15 (instead of 6), and that of C``~
3

is
6 (instead of 2). However, it should be noted that these are merely upper limits, which for massive
particles are not reached except for sources of in"nitesimally small lifetimes. For soft photons
however the situation is di!erent (see below).

The `newa terms, proportional to Sal(k1
)al(k2

)T are due to the non-stationarity (in k space) of
the source. While in quantum optics time stationarity is the rule, in particle physics this is not the
case because of the "nite lifetime and "nite radius of the sources. The existence of a non-vanishing
expectation value of the products a(k

1
)a(k

2
) is what one would expect (see Section 2.2) from

two-particle coherence (squeezing), just as Sa(k)TO0 follows from ordinary (one-particle) coher-
ence (note that the latter has not been assumed here). The fact that squeezing which, as mentioned
above, is quite an exceptional situation in optics, discovered only recently, is a natural consequence
of the formalism for present particle physics, is possibly one of the most startling results obtained
recently in BEC. A characteristic feature of isospin squeezed states is that they are two-mode states
and that for static sources they lead to anti-correlations. Finally, it should be pointed out again that
the above results } in particular, the fact that C00

2
in general di!ers from C~~

2
} are consistent with

isospin symmetry.
In closing this section one should note that the existence of particle}antiparticle correlations is

not restricted to pions but applies also to other systems, e.g. neutral kaons. In principle, thus there
exist also K

0
KM

0
quantum statistical correlations. However, since K

0
particles cannot be observed

except in linear combinations with KM
0

in the form of K
4

and K
-
, the QS particle}antiparticle

correlation e!ect has to be disentangled from the K
4
K

4
or K

-
K

-
Bose}Einstein correlation (K

4
and

K
-
are of course bosons and thus subject to BEC) which exist also in the wave-function formalism

which ignores the intrinsic `newa K
0
KM

0
correlation. As a matter of fact K

4
K

4
correlations have

been observed experimentally; however, no attempt has been made so far to extract from them
the surprising e!ects.26 (For more recent experiments see [72] and for a theoretical analysis of the
`olda e!ects and their possible application in CP violation phenomena see [73].)27
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4.4.1. An illustrative model of uncorrelated point-like random sources
To clarify the origin of di!erent terms in the functions Cab

2
(k

1
, k

2
), let us consider, a source

consisting of N point-like random sources

J
a
(x)"

N
+
i/1

j
a
(x

i
)d(t!t

i
)d3(x!x

i
), a"#,!, 0 (4.42)

and assume that the currents j
a
(x

i
) at di!erent points x

i
are mutually independent and have the

same statistical properties, i.e.

S jH
a
(x

i
)j
b
(x

j
)T"d

ij
S jH

a
j
b
T . (4.43)

We also assume in this section that

S j
a
T"0 , (4.44)

i.e. ignore a possible coherent component S j
a
T to make the presentation more transparent.

Now the one-particle distribution is

SJH
a
(k)J

a
(k)T"N ) S jH

a
j
a
T (4.45)

and the two-particle distribution takes the form

SJH
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a
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1
) JH
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2
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2
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"
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(x

i
)j
a
(x

i
)jH
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i
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N
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iEj
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(x
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)j
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(x

i
)TS jH

b
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j
)j
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(x

j
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N
+
iEj

S jH
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(x

i
)j
a
(x

i
)TS jH

a
(x

j
)j
b
(x

j
)Te*(k1~k2 )(xi~xj )

#

N
+
iEj

S jH
a
(x

j
)jH
b
(x

j
)TS j

a
(x

i
)j
b
(x

i
)Te*(k1`k2 )(xi~xj ) . (4.46)

Let us consider separately the four di!erent terms on the right-hand side of Eq. (4.46). The "rst
term corresponds to two particles being emitted from a single point (Fig. 6a); it is proportional to
the number of emitting points.

The second term describes an independent emission of two particles from di!erent points
(Fig. 6b).

The third term, being non-zero for a"b, describes an interference e!ect of direct and exchange
diagrams, characteristic of identical particles, emitted from di!erent points (Fig. 6c). This is the
usual BE-correlation e!ect.

The fourth term describes an interference of two-particle emissions from di!erent points (Fig. 6d)
(`two-particle sourcesa). It is non-zero for real currents with a"b (n0n0) and for complex currents
with JH

a
"J

b
(n`n~), that is for particle}antiparticle associative emission. In this simple model, it

represents the `surprisinga e!ects discussed above.
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Fig. 6. Diagrams contributing to di!erent terms of the two-particle correlator in the point-like random source model
(from Ref. [3]).

28Photon emission from proton}proton collisions is suppressed because it is of quadrupole form.

This diagrammatic illustration of the `surprisinga BE-correlations is due to Bowler [75],
who found that these e!ects derived for the "rst time in Ref. [71] can be understood in terms
of the qualitative considerations mentioned above. Bowler derived the `newa e!ects from the
string model.

4.5. Photon interferometry. Upper bounds of BEC

The advantage of photon BEC resides in the fact that photons are not in#uenced by "nal state
interactions. Photons present also an interesting subject of theoretical research from the general
BEC point of view, since they are spin-one bosons while pions and kaons used in hadronic BEC are
scalar particles. We shall see below that this supplementary degree of freedom has speci"c
implications for BEC. Last but not least, photon correlations are for various reasons, discussed
below, of particular interest in the search of quark matter. We present some of the results of [76],
which contain as a special case those of [77] and where these topics are discussed.

Consider a heavy ion reaction where photons are produced through bremsstrahlung from
protons in independent proton}neutron collisions.28 The corresponding elementary dipole
currents are

jj(k)"(ie/mk0)p ) ej(k) , (4.47)
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where p"p
*
!p

&
is the di!erence between the initial and the "nal momenta of the proton, ej is the

vector of linear polarization and k the photon momentum; e and m are the charge and mass of the
proton, respectively. The total current is written as

Jj(k)"
N
+
n/1

e*kxnjj
n
(k) . (4.48)

For simplicity, we will discuss in the following only the case of pure chaotic currents SJj(k)T"0
and refer for coherence e!ects to the original literature [76,77]. In analogy to the considerations of
the previous subsection the index n labels the independent nucleon collisions which take place at
di!erent space}time points x

n
. These points are assumed to be randomly distributed in the

space}time volume of the source with a distribution function f (x) for each elementary collision. The
current correlator is proportional to products of the form

SJj1 (k
1
)Jj2(!k

2
)T"eij1

(k
1
)A

N
+
n/1

Spi
n
pj
n
TBejj2

(k
2
) . (4.49)

For central collisions due to the axial symmetry around the beam direction one has for the
momenta the tensor decomposition

Spi
n
pj
n
T"1

3
p
n
dij#d

n
lilj , (4.50)

where l is the unit vector in the beam direction and p
n
, d

n
are real positive constants. In [77] an

isotropic distribution of the momenta was assumed. This corresponds to the particular case d
n
"0.

The generalisation to the form (4.50) is due to [76]. The summation over polarisation indexes is
performed using the relations

S(ei ) p
-
)(ej ) p

l{
)T"1

3
(ei ) ej)d

ll{
, (4.51)

2
+

j/1

eij(k)ejj (k)"dij!ninj , (4.52)

where n"k/DkD.
We write below the results for the second-order correlation function
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2
(k
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)/o
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1
)o

1
(k

2
) (4.53)

for two extreme cases:
(1) Uncorrelated elementary currents (isotropy) (p<d)

C
2
(k

1
, k

2
; pO0, d"0)"1#1

4
[1#(n

1
) n

2
)2][D fI (k

1
!k

2
)D2#D fI (k

1
#k

2
)D2] , (4.54)

leading to an intercept

C
2
(k, k)"3

2
#1

2
D fI (2k)D2 (4.55)

limited by values (3
2
, 2).

(2) Strong anisotropy (p;d)

C
2
(k

1
, k

2
; p"0, dO0)"1#D fI (k

1
!k

2
)D2#D fI (k

1
#k

2
)D2 (4.56)
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Fig. 7. The linear polarisation vectors ej(k) for two photons with momenta k
1

and k
2

(from Ref. [82]).

29See [78,79] where photon correlation experiments in low energy (100MeV/nucleon) heavy ion reactions are
reported. For a theoretical discussion of these experiments see [80].

30The relation between photon interferometry and the formation length of photons is discussed in [81].

with an intercept

C
2
(k, k)"2#D fI (2k)D2 (4.57)

limited this time by values (2,3). Note that due to the form of the photon}current interaction (4.47)
in this (strong anisotropy) case the photons emerge practically completely polarised so that the
summation over polarisations does not a!ect the correlation.

These results are remarkable among other things because they illustrate the speci"c e!ects of
photon spin on BEC. Thus while for (pseudo)scalar pions the intercept is a constant (2 for charged
pions and 3 for neutral ones) even for unpolarised photons the intercept is a function of k.

For a graphical illustration and explanation of this fact see Fig. 7. It is seen that to perform the
summation over polarisation implied by Eq. (4.51) only one direction of the linear polarisation can
be chosen to be equal for both photons, while the other polarisation direction di!ers by the angle
h between the momenta k

1
, k

2
.

One thus "nds that, while for a system of charged pions (i.e. a mixture of 50% positive and 50%
negative) the maximum value of this intercept Max C

2
(k, k) is 1.5, for photons Max C

2
(k, k) exceeds

this value and this excess re#ects the space}time properties (represented by fI (k)), the degree of
(an)isotropy of the source represented by the quantities p and d, and the supplementary degree of
freedom represented by the photon spin.

As a consequence of the fact that fI is a decreasing function of its argument, in Eqs. (4.54) and
(4.56) the terms with fI (k

1
#k

2
) are in general smaller than the terms with fI (k

1
!k

2
), except for

small momenta k.
The fact that the di!erences between charged pions and photons are enhanced for soft photons

reminds us of a similar e!ect found with neutral pions (see Section 4.4). Neutral pions are in general
more bunched than identically charged ones and this di!erence is more pronounced for soft pions.
This similarity is not accidental, because photons as well as n0 particles are neutral and this
circumstance has quantum "eld theoretical implications which are also mentioned below.

We see thus that photon BEC can provide information both about the space}time form of the
source represented by f and the dynamics which are represented by d.29,30
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The results on photon correlations presented above refer to the case where the sources
are `statica i.e. not expanding. Expanding sources were considered in [82] within a covariant
formalism.

Some of the results above, in particular Eqs. (4.54) and (4.55), which had been initially derived by Neuhauser [77], were
challenged by Slotta and Heinz [83]. Among other things, these authors claim that for photon correlations due to
a chaotic source `the only change relative to 2-pion interferometry is a statistical factor 1

2
for the overall strength of the

correlation which results from the experimental averaging over the photon spina. In [83] an intercept 3
2
is derived which is

in contradiction with the results presented above and in particular with Eq. (4.55) where besides the factor 3
2
there appears

also the k dependent function 1
2
D fI (2k)D2. Similar statements can be found in previous papers [84}87] where more detailed

applications concerning heavy ion reactions based on this assertion of [83] are presented.
Some of the papers quoted above were criticised immediately after their publication in [88,89,82] and the paper [83]

was written with the intention to settle this `controversya.
It should be pointed out here that the reason for the di!erence between the results of [77,76] on the one hand and those

of Ref. [83] on the other is mainly that in [83] a formalism was used which is less general than that used in [77,76] and
which is inadequate for the present problem. This implies among other things that unpolarised photons cannot be treated
in the way proposed in [83] and that the results of [77,76] are correct.

In [83] the following formula for the second-order correlation function is used:

C(k
1
, k

2
)"1#

g8 kl(q, K)g8 lk(!q, K)

g8 kk(0, k
1
)g8 kk(0, k

2
)

. (4.58)

Here g8 is the Fourier transform of a source function, q"k
1
!k

2
and K"1

2
(k

1
#k

2
). This formula is a particular case of

a more general formula for the second-order correlation function derived by Shuryak [64] using a model of uncorrelated
sources, when emission of particles from the same space}time point is negligible (see Section 4.4.1).

Since this equation is sometimes used in the recent literature without giving the reader the possibility of evaluating the
approximations used in its derivation, we will sketch this derivation in the following.

In [64] one starts with the current correlator

SJH
i
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1
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j
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2
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ij
J
i
(x,*x) , (4.59)

where J
i
(x) is the current emitted by point x and

x"(x
1
#x

2
)/2, *x"x

1
!x

2
. (4.60)

Eq. (4.59) assumes that the individual currents (iOj) are uncorrelated. With the notation II
i
(q,K) for the Fourier

transform of I
i
(x,*x) and II (q,K),+

i
II (q,K) the inclusive single-particle distribution reads

=(k)"TK+
j
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(x) d4xKU"+
i

II
i
(0, k)"II (0, k) (4.61)

and the two-particle distribution is given by

=(k
1
k
2
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or "nally
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1
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(q,K)D2] . (4.63)
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The "rst term on the r.h.s. of Eq. (4.63) is the product of one-particle distributions and the second term is
the conventional interference term, corresponding to Fig. 6c. By going over to the Wigner source function (see also
Section 4.9)

gkl(x,K)"Pd4ye~*KySJHk (x#1
2
y)Jl (x!1

2
y)T , (4.64)

these "rst two terms result in Eq. (4.58) of [83]. However as is clear from Eq. (4.63) there exists also a third term, neglected
in Eq. (4.58) and which corresponds to the simultaneous emission of two particles from a single point (x

i
) as indicated in

Fig. 6d. While for massive particles this term is in general suppressed, this is not true for massless particles and in
particular for soft photons. In [77,76] this additional term had not been neglected as it was done in [83] and therefore it is
not surprising that Ref. [83] could not recover the results of Refs. [77,76]. The neglect of the term corresponding to
emission of two particles from the same space}time point is not permitted in the present case. As mentioned in Section
4.4.1, in a model of uncorrelated point-like random sources like the present one, emission of particles from the same
space}time point corresponds in a "rst approximation to particle}antiparticle correlations and this type of e!ect leads
also to the di!erence between BEC for identically charged pions and the BEC for neutral pions. This is so because neutral
particles coincide with the corresponding antiparticles. (As a consequence of this, e.g. while for charged pions the
maximum of the intercept is 2, for neutral pions it is 3 (see Section 4.4).) Photons being neutral particles, similar e!ects like
those observed for n0}s are expected and indeed found (see above).

This inconsequent application of the current formalism invalidates the conclusions of Ref. [83] and con"rms and
strengthens the criticism expressed in [88,89,82] of the papers [84}87]. The fact that for unpolarised photons
MaxC

2
(k, k) is 2, can be understood by realising that a system of unpolarised photons consists on the average of 50%

photons with the same helicities and 50% photons with opposite helicities. The "rst ones contribute to the maximum
intercept (of the unpolarized system) with a factor of 3 and the last ones with a factor of 1 (corresponding to unidentical
particles).

For the sake of clari"cation it must be mentioned that Ref. [83] contains also other incorrect statements. Thus the
claim in [83] that the approach by Neuhauser `does not correctly take into account the constraints from current
conservationa is unfounded as can be seen from Eq. (4.51) which is an obvious consequence of current conservation (see
e.g. Eq. (7.61) in [90]). Last but not least the statement that because the tensor structure in Eq. (20) of Ref. [82] is
parametrised in terms of k

1
and k

2
separately `instead of only in terms of K, leading to spurious terms in the tensor

structure which eventually result in their spurious momentum-dependent prefactora has also to be quali"ed. As
mentioned above, Eq. (4.58) to which this observation about the K dependence of [83] refers is not general enough for the
problem of photon interferometry.

4.6. Coherence and lower bounds of Bose}Einstein correlations

We mentioned in the previous subsections that the intercepts of the second- and higher-order
correlation functions can deviate from the canonical values derived within the wave function
formalism. This e!ect is important for at least three reasons:

(i) It illustrates the limitations of the wave-function approach.
(ii) It can in principle (provided other e!ects like "nal state interactions are taken into account)

be used for the determination of the degree of coherence.
(iii) It can serve as a test of models of BEC, since the value of the intercept follows from very

general quantum statistical considerations, in particular the Gaussian nature of the density matrix.
In most BEC models the intercept is identical to the maximum of the correlation function and

therefore it can be studied by limiting the discussion to chaotic sources as was done in the previous
subsection where the upper bounds of correlation functions were investigated. On the other hand,
the minimum of the correlation functions is determined both by the form of the density matrix and
the amount of coherence (see Ref. [88]) because coherence leads to a decrease of the correlation
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31This statement is not necessarily in contradiction with the empirical observation that the j factor in e`}e~ reactions
appears in general to be larger than in p}p reactions, given the fact that j is not a true measure of coherence.

function. This will be illustrated below by discussing the lower bounds of this function. We will
show among other things (see [3]) that in the quite general case of a Gaussian density matrix, for
a purely chaotic system the two-particle correlation function must always be greater than one. On
the other hand, in the presence of a coherent component the correlation function may take values
below unity. Some implications for experimental and theoretical results found in the literature will
be discussed here as well as in Section 5.1.6.

We have seen in Section 4.4 that for identically charged bosons (e.g., n`) the two-particle
correlation function reads

C``
2

(k
1
, k

2
)"1#2Jp

1
(1!p

1
) ) p

2
(1!p
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)¹

12
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12
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1
p
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¹2

12
. (4.65)

For neutral bosons like photons, or n0's, the terms dI (k
r
, k

4
) also appear (see Eq. (4.36)) in the BEC

function:
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. (4.66)

Let us "rst consider the case of a purely chaotic source. Insertion of p(k),1 in Eqs. (4.65) and
(4.66) immediately yields C

2
(k

1
, k

2
)51. In the case of partial coherence, the terms containing

cosines come into play and consequently C
2

may take values below unity. Eqs. (4.65) and (4.66)
imply that C~~

2
(k

1
, k

2
)52/3 and C00

2
(k

1
, k

2
)51/3. Because of the cosine functions in (4.65) and

(4.66) one would expect C
2

as a function of the momentum di!erence q to oscillate between values
above and below 1.

Such a behaviour of the Bose}Einstein correlation function has been observed in high-energy e`}e~ collision
experiments (see e.g., Ref. [91]), but apparently not in hadronic reactions. This observation was interpreted as
a consequence of "nal state interactions in Ref. [75]. If "nal state interactions determine this e!ect, it is unclear why the
e!ect is not seen in hadronic reactions. On the other hand, if coherence is responsible for it, this would be easier to
understand. Indeed multiplicity distributions of secondaries in e`e~ reactions are much narrower (almost Poisson-like)
than in pp reactions, which is consistent with the statement that hadronic reactions are more chaotic than e`}e~
reactions [92].31

So far, two methods have been proposed for the detection of coherence in BEC: the intercept
criterion [93] (C

2
(k, k)(2) and the two-exponent structure of C

2
[28]. Both these methods have

their di$culties because of statistics problems or other e!ects. The observation of C
2
(k

1
, k

2
)(1

could constitute a third criterion for coherence.
In [84,85] the two-particle correlation function has been calculated for photons emitted from

a longitudinally expanding system of hot and dense hadronic matter created in ultrarelativistic
nuclear collisions. For such a system, the particles are emitted from a large number of independent
source elements (#uid elements), and consequently one would expect the multiparticle "nal state to
be described by a Gaussian density matrix. However, although the system is assumed to be purely
chaotic the correlation function calculated in [84] is found to take values signi"cantly below unity.
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32This formula appears apparently for the "rst time in [94] and was criticised (for other reasons) already in [95]. It is
nevertheless used in certain event generators for heavy ion reactions (see Section 4.10).

Clearly, this is in contradiction with the general result derived above from quantum statistics
(C

2
51 for a chaotic system).

The reason for this violation of the general bounds derived for a purely chaotic source is in this
concrete case the use of an inadequate approximation in the evaluation of the space}time integrals.
However as pointed out in [89] the expression for the two-particle inclusive distribution used in
Ref. [84] (Eq. (3) of that paper), which in our notation takes the form

P
2
(k

1
, k

2
)"Pd4x

1Pd4x
2
g(x

1
, k

1
)g(x

2
, k

2
)[1#cos((k

1
!k

2
)(x

1
!x

2
))] , (4.67)

is also unsatisfactory32 because for certain physical situations it can lead to values below unity for
the two-particle correlation function even if the integrations are performed exactly. To see this,
consider, e.g., the simple ansatz

g(x, k)"const. exp[!a(x!bk)2]d(t!t
0
) , (4.68)

where a and b are free parameters. The expression for P
2
(k

1
, k

2
) used in Ref. [84] then yields

C
2
(k

1
, k

2
)"1#exp[!q2/2a] cos[bq2] . (4.69)

Clearly, if b exceeds a~1 the above expression will oscillate and take values below unity. On the
other hand, in the current formalism (see below) one obtains with the same ansatz for g

C
2
(k

1
, k

2
)"1#exp[!q2/2a]51 . (4.70)

Thus, Eq. (4.67) can lead to values C
2
(1 if there is a strong correlation between the momentum

of a particle and the space}time coordinate of the source element from which it is emitted. Such
correlations between x and k can occur in the case of an expanding source. The reason for this
pathological behaviour is that the simultaneous speci"cation of coordinates and momentum as
implied by Eq. (4.67) is constrained in quantum mechanics by the Heisenberg uncertainty relation
and any violation of this constraint leads necessarily to a violation of quantum mechanics. This
violation manifests itself sometimes, as in the present case, through a violation of the conservation
of probability. This phenomenon is also met when using the Wigner function, which for this reason
cannot always be associated with a bona"de probability amplitude. We will discuss this problem
also in Section 5.1.6.

The above considerations concerning bounds for the BEC functions refer to the case of
a Gaussian density matrix. In general, a di!erent form of the density matrix may yield correlation
functions that are not constrained by the bounds derived here. For instance, we have seen in
Section 2.2 that for squeezed states C

2
can take arbitrary positive values. Moreover, for particles

produced in high-energy hadronic or nuclear collisions, the #uctuations of quantities such as
impact parameter or inelasticity may introduce additional correlations which may also a!ect the
bounds of the BEC functions.
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33For reasons of notational simplicity we have replaced Js(k) by J(!k).

4.7. Quantum currents

The results derived in the previous section, in particular the isospin dependence of BEC, were
obtained in the assumption that the currents were classical. The question arises up to what point
these conclusions survive in a fully quantum treatment of the problem. It would also be important
to get a more precise criterion for the phenomenological applicability of the classical assumption,
besides the no-recoil prescription. This question was discussed in [96] where it was found that the
`surprisinga e!ects not only persist when the currents are quantum, but that they can serve as an
experimental estimate of the size of the quantum corrections. We shall sketch brie#y in the
following the results of Ref. [96].

As in the classical current case one starts with the interaction Lagrangian

¸
*/5

(x),J
(`)

(x)n(~)(x)#J
(~)

(x)n(`)(x)#J
0
(x)n0(x) (4.71)

The currents J(`),J(~), J0 are operators which we assume again for simplicity as not depending on
the n(B) and n0 "elds ([J,n]"0). Taking into account the di!erent isospin components in Eqs.
(4.10) and (4.11) we "nd that as in the classical current case the single and double inclusive cross
sections depend on these components, e.g.33
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From now on we shall omit the label H and assume that all operators are written in the
Heisenberg representation. Assuming a Gaussian density matrix one gets
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where functions F and U are de"ned for charged particles (upper index ch) and for neutral ones
(upper index n) as follows:
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In contrast to the classical current approach [3] which deals with only one type of two-current
correlator we have here two di!erent kinds of two-current correlators depending on their ordering
prescriptions. Moreover and most remarkably, the di!erence between these two correlators is
re#ected by the di!erence between !! and #! correlations. It thus follows from [96] that
the `surprisinga e!ects found in [71], i.e. the presence of particle}antiparticle Bose}Einstein type
correlations and a new term in the Bose}Einstein correlation function for neutral particles are
reobtained, but under a more general form which contains also the quantum corrections. These
equations also prove that the above e!ects are not an artefact of the classical current formalism but
have general validity.

Moreover and most remarkably, from the above equations follows that the diwerence between the
ewects of the classical and quantum currents resides in just these `new ewectsa and in particular in the
diwerence between 00 and !! correlations, i.e. in the #! correlations. This result can serve as an
estimate of the importance of quantum corrections to the classical current formalism of BEC. Since
#! correlations are in general small, it follows that the classical current approach is a good
approximation, except for very short-lived sources, where the #! correlations become compara-
ble to the !! correlations. It also follows that the experimental measurement of #! correla-
tions is a highly rewarding task, since they are a rather unique tool for the investigation of two very
interesting e!ects in BEC, namely squeezed states and quantum corrections.

4.8. Space}time form of sources in the classical current formalism

In [3] two types of sources were considered, a `statica one which corresponds to a source in rest
and an expanding one. We will present below some of the results, as they exemplify certain
important features of the space}time approach within the classical current formalism.

A static source: The space}time distributions of static sources, as well as the primordial
correlator, are parametrised as Gaussians:
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Note that the term static here does not imply time independence but rather a speci"c time
dependence de"ned by Eqs. (4.83) and (4.84) corresponding to source elements being at rest. This is
to be contrasted to the expanding source, discussed in the next section, which explicitly contains
velocities of source elements.

The main justi"cation for this particular form of parametrisation is mathematical convenience,
because, as will be shown below, for this case the correlation functions in momentum space can be
calculated analytically and the physical implications can be read immediately.

In Eqs. (4.83)}(4.85), R
#),a and R

#,a(a"0,o, E) are the lifetimes, transverse radii and longitudinal
radii of the chaotic source and of the coherent source, respectively, and ¸a (a"0,o, E) are the
correlation time and the corresponding correlation lengths in transverse and in longitudinal
direction. The relative contributions of the chaotic and the coherent component are determined
by "xing the value of the (momentum dependent) chaoticity parameter p at some arbitrary scale
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34This is not the case anymore for an expanding source, e.g. (see below) or in general for higher-order correlations.

(in this case, at k"0):

p
0
,p(k"0) . (4.86)

The model contains 10 independent parameters: the radii and lifetimes of the chaotic and of the
coherent source, the correlation lengths in space and time, and the chaoticity p

0
. In [3] it is

assumed that ¸
,
"¸

M
,¸, i.e., that the medium is isotropic, which leaves us with nine indepen-

dent parameters.
With the de"nitions
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one may write the single inclusive distribution in the form
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The scales which determine the mean energy}momentum of the coherently produced particles are
given by the inverse lifetime and radii, R~1

#,a , of the coherent source. For the chaotically produced
particles, these scales are given by the inverse of a combination of correlation lengths and
dimensions of the chaotic source, R~1aL . Eq. (4.87) implies that RaL4R

#),a . The radius of the chaotic
source enters the single inclusive distribution only in combination with the correlation length ¸.
This feature which occurs also for higher-order correlations leads to the important consequence
that experimental measurements of BEC do not provide separately information about radii
(lifetimes) of sources, nor about correlation lengths (-times), but rather about the combination of
these quantities as given by Eq. (4.87). On the other hand, by measuring both the single and the
double inclusive distribution one can disentangle radii from correlation lengths.

It follows from Eqs. (4.88)}(4.90) that in the presence of partial coherence in general (i.e., unless
RaL"R

#,a) the single inclusive distribution is a superposition of two Gaussians of di!erent widths.
If the geometry of the coherent source is the same as that of the chaotic source, one has
R

#,a"R
#),a'R

La , which would imply that coherently produced particles can be observed
predominantly in the soft regime. However, if the coherent radii are small compared to the chaotic
ones, this situation is reversed.

As a next step, consider the correlation functions. The correlation function of two negatively
charged pions is
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For the Gaussian parametrisations all phases in the second-order correlation function disappear,34
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35Till recently this desirable physical property, which is observed in most experimental data on BEC, was considered
to be a consequence of the expansion of the source and used to be derived within the Wigner function formalism, which is
also a particular case of the classical current formalism. As shown in the example treated above (see [33]), it can be
considered also a consequence of the (partial) coherence of a non-expanding source.
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The two-particle correlation function C~~
2

is the sum of a purely chaotic term (J¹2
12

) and
a mixed term (J¹

12
). The momentum dependence of the chaoticity parameter, p"p(k), implies

a momentum dependence of the contribution of the mixed term relative to that of the purely
chaotic term. To see how this a!ects the interplay between the two terms (i.e., the interplay between
the two Gaussians), it is useful to explicitly insert the momentum dependence of the chaoticity
parameter by writing
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With this, C~~
2

takes the form
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The momentum dependence of the relative contributions of the purely chaotic and of the mixed
term is re#ected in the factor S

12
. Depending on the sign of the combinations R2

#,a!R2aL , S
12

may
act either as a suppression factor or as an enhancement factor of the mixed term relative to the
chaotic term. This is a consequence of the fact that, in contrast to the case of the correlation
function C

2
derived within the wave-function formalism, where C

2
depends only on the di!erence

of momenta k
1
!k

2
now the correlation function depends also on k

1
#k

2
.35
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36Some authors have recently called them `back-to-backa correlations.
37This particular possibility was suggested in [97]. Andreev [98] suggested a time evolution scenario for the medium

e!ect.
38Anticorrelations in disoriented chiral condensates are considered in [99].

It is instructive to discuss the tilde terms that give rise to the particle}antiparticle correlations for
parametrisation (4.83)}(4.85) of a static source. For the sake of transparency, consider only the
purely chaotic case, p

0
"0. The correlation functions of like and unlike charged pions then take

the form
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From (4.93) and (4.94) it can be seen that the `newa ¹I
12

terms that appear in the par-
ticle}antiparticle correlations are in general small compared to the `ordinarya ¹

12
terms that

determine the particle}particle correlations. The term ¹I
12

gives rise to an anticorrelation e!ect due
to the factor in Eq. (4.94) containing the sum k

1
#k

2
, if the "rst factor, containing E

1
#E

2
, is not

too small. The latter is possible, if the time duration of the pion emission process and/or the pion
energies are su$ciently small. We thus expect an enhanced contribution of the `newa terms for soft
pions. The appearance of anticorrelations36 is, as mentioned above, a general property of squeezed
states, which are present in the space}time formalism of [3]. The tilde terms arise as a consequence
of the non-stationarity of the source. In the limit of a stationary source, R

0
PR, and ¹I

12
P0. An

upper limit is given by
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In the limit ¸
0
<R

0
on the other hand, R

0
KR

0L
and C`~

2
reaches its maximum value

(C`~
2

)
.!9

"2. We observe in the above equation that the contribution of the `tildea terms increases
with decreasing mass of the particles and reaches its maximum of 2 for massless particles at "xed
and non-vanishing R

0
!R

0L
. This is related to the observation made in the case of photon BEC

where we saw that for unpolarised photons the maximum of C
2

is also 2. Indeed, the role which the
charge degrees of freedom (#,!) play in the case of pions is for unpolarised photons taken over
by the spin. From this mass dependence or more general from the energy dependence of the
anticorrelation follows that if the factor E

1
#E

2
in Eq. (4.94) could be decreased, an enhancement

of the `newa terms would emerge. A possible mechanism for this could be the sudden transition
mechanism considered in [16]. Indeed as shown in this reference (see also Eqs. (2.15) and (2.16)) for
a chaotic source the correlator Sa(k

1
)a(k

2
)T characteristic of the `newa terms turns out to be an

increasing function of the parameter r"1
2
log(E

a
/E

b
) where E

a
, E

b
are the energies of the particle in

the vacuum and medium, respectively. Thus by allowing for medium e!ects, which in a certain
sense is equivalent to an e!ective change of mass,37 one can possibly enhance the anticorrelation
e!ect38 in BEC.

Expanding source. High-energy multiparticle dynamics suggests that the sources of produced
particles are expanding. This property is re#ected in particular in hydrodynamical models and also
in string models. In terms of the current formalism this means that the correlators are velocity
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Fig. 8. Geometry of the boost-invariant source (from Ref. [3]).

dependent. While many of the studies of Bose}Einstein correlations for expanding sources have
followed, with slight variations, a Wigner function type of approach, the use of the Wigner
approach is in general too restrictive and is recommendable only in the case where a full-#edged
hydrodynamical description of the system is performed. In the present section, following [3], we
shall therefore start with a more general discussion of the expanding source which is based on the
space}time current correlator and the space}time form of the coherent component and which is not
a!ected by the semi-classical and small q approximations inherent in the Wigner function
approach.

We introduce the variables q, g and x
,
, with
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,
, g"1

2
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,
)/(x

0
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,
)] . (4.102)

Here q is the proper time, x
,

the coordinate in the longitudinal direction (e.g. the collision axis in
p}p reactions or the jet axis in e`}e~ reactions) and g the space}time rapidity. An ansatz which is
invariant under boosts of the coordinate frame in longitudinal direction will be considered (Fig. 8).
Physically, this ansatz is motivated by the prejudice that the single inclusive distribution in rapidity
is #at. The space}time distributions of the chaotic and of the coherent source and the correlator are
then parametrised as

f
#)

(x)& exp[!(q!q
0,#)

)2/(dq
#)

)2] exp(!x2
M
/R2

#)
) . (4.103)
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#
(x)&exp[!(q!q

0,#
)2/(dq
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) (4.104)
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] . (4.105)

The model contains again 10 independent parameters: the proper time coordinates of the chaotic
and the coherent source, q

0,#)
, q

0,#
, their widths in proper time, dq

#)
and dq

#
, the transverse radii,

R
#)

and R
#
, the correlation lengths ¸q ,¸M

and ¸g , and the chaoticity parameter p
0
.
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In order to be able to obtain explicit expressions for the single inclusive distribution and the
correlation functions, a further simplifying assumption is made, namely, that dq

#)
"dq

#
"0.

Eqs. (4.103) and (4.104) then take the form

f
#)

(x)&d(q!q
0,#)

) exp(!x2
M
/R2

#)
) , (4.106)

f
#
(x)&d(q!q

0,#
) exp(!x2

M
/R2

#
) . (4.107)

Now the results no longer depend on the correlation length ¸q , and one is left with seven
independent parameters: q

0,#)
, q

0,#
, R

#)
,R

#
,¸

M
,¸g and p

0
.

The Fourier integrations necessary to obtain D(k
1
, k

2
) and I(k) can be performed by doing

a saddle point expansion; this should provide a good approximation if

a
i
,m

iM
q
0,#)

/2<1, b,q2
0,#)

/2¸2g<1 . (4.108)

With the de"nitions:
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the single inclusive distribution can be written as the sum of a chaotic and a coherent term

E(1/p)d3p/d3k"(p
0
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#)

(k)#(1!p
0
)s
#
(k))E(1/p)d3p/d3kD
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(4.111)

with

s
#)

(k)"(m
p
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) exp[!k2

M
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/2] , (4.112)

s
#
(k)"(m

p
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M
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#
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where m
M

is the transverse mass of the pions emitted. The momentum dependence of the chaoticity
parameter takes the form

p
r
"p(k

r
)"p

0
/A

r
(r"1, 2) (4.114)

with

A
r
,A(k

r
)"p

0
#(1!p

0
)S

rr
(r"1, 2) , (4.115)

and

S
rs
"exp[!(k2

rM
#k2

sM
)(R2

#
!R2

L
)/4] . (4.116)

Unless R
#
"R

L
, the transverse momentum distribution is a superposition of two Gaussians of

di!erent widths. The rapidity distribution is uniform, dN/dy"const., as a result of boost invari-
ance. In opposition to what is assumed usually in simpli"ed quasi-hydrodynamical treatments, the
transverse radius of the chaotic source, R

#)
, cannot be determined independently by measuring

only the single inclusive distribution, as the quantity R
L

which sets the scale for the mean
transverse momentum of the chaotically produced particles is a combination of R

#)
and the

correlation length ¸
M
.
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39An attempt to consider the correlation between coordinates and momentum was also performed earlier within the
ordinary wave-function formalism by Yano and Koonin [94] who proposed a formula for the second-order correlation
function of form (4.67). However, this form turned out subsequently to have pathological features as it leads in some cases
to a violation of the lower bounds of the correlation function (see Section 5.1.6). The reason for this misbehaviour is
mentioned in Section 4.6 and will also be discussed in the following.

We recall that the second-order correlation functions
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are de"ned in terms of the magnitudes and phases of d
rs

and dI
re

, ¹
rs
, ¹I

rs
, /#)

rs
and /I #)

rs
of the

chaotic source as well as of the phases of the coherent component, /#
r
. The expressions for these

quantities read for an expanding source:
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/#
j
"!q

0,#
m

jM
. (4.121)

One thus "nds again that the correlation functions do not depend separately on the geometrical
radii R or on the correlation lengths ¸ but rather on the combination R

L
de"ned in (4.109). This

expression reduces in the limit R
#)
<¸ to ¸ and in the limit. R

#)
;¸ to R. The model considered

in [39] is thus a particular case of the space}time approach [3] for ¸"0.
As in the static case the tilde terms give rise to the particle}antiparticle correlations. For a purely

chaotic system the intercept of the p`p~ correlation function is

C`~
2

(k, k)"1#(1#4(b/a)2)~1@2"1#(1#4(q
0,#)

/m
M
¸2g )2)~1@2 . (4.122)

We conclude this section with the observation that in [3] a correspondence between the
correlation length ¸ in the primordial correlator C(x!y) and the temperature ¹ for a pion source
that exhibits thermal equilibrium was established. In the limit of large volume <JR3 and lifetime
R

0
of the system, it reads

¸&¹~1 . (4.123)

4.9. The Wigner function approach

As mentioned previously, the experimental observation of the fact that the two particle correla-
tion function depends not only on the di!erence of momenta q"k

1
!k

2
but also on the sum

k
1
#k

2
led to the introduction and the use [100] of a `sourcea function within the well-known

Wigner function formalism of quantum mechanics.39 While it turned out later that this property of
the correlation function can be derived within the current formalism without the semiclassical
approximations involved by the Wigner formalism, this formalism is still useful when applied
within a hydrodynamical context.
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The Wigner function approach for BEC was proposed in a non-relativistic form in Ref. [100]
and subsequently generalised in [101,3] (see also [64,95]). The Wigner function called also source
function, g(x, k), may be regarded as the quantum analogue of the density of particles of momentum
k at space}time point x in classical statistical physics. It is de"ned within the wave-function
formalism as

g(x, k, t)"Pd3x@tHAx#
1
2

x@, tBtAx!
1
2

x@, tBe*kx{

(4.124)

"Pd3k@tHAk#
1
2

k@, tBtAk!
1
2

k@, tBe~*k{x

and is related to the coordinate and momentum densities by the relations

n(x, t)"Pd3k g(x, k, t) , (4.125)

n(k, t)"Pd3xg(x, k, t) , (4.126)

respectively.
Due to its quantum nature the function g(x, k) takes real but not necessarily positive values.

Although Eq. (4.124) is nothing but a de"nition which does not imply any approximation, its form
suggests that it might be useful when simultaneous information about coordinates and momenta
are desirable, provided of course that the limits imposed by uncertainty relations are not violated.
As a matter of fact as will be shown below, the Wigner function is useful for BEC only if a more
stringent condition is ful"lled, namely that the di!erence of momenta q of the pair is small, as
compared with the individual momenta of the produced particles. It is thus clear that its
applicability is more restricted than that of the classical current approach, where only the
`no recoila condition, i.e. small total momentum of produced particles, as compared with the
momentum of incident particles, must be respected. This circumstance is often overlooked when
comparing theoretical predictions based on the Wigner approach with experimental data. In
particular, it also follows that the application of the Wigner formalism to data has necessarily to
take into account from the beginning resonances which dominate the small q region. It turns out
that the use of the Wigner function for BEC is heuristically justi"ed only in special cases as, e.g.
when a coherent hydrodynamical study is performed, i.e. when the observables are related to an
equation of state and when simultaneously single- and higher-order inclusive distributions are
investigated. Unfortunately only very few papers, where the Wigner function formalism is used, are
bona"de hydrodynamical studies. The majority of papers in this context are `quasi-hydrodynami-
cala (see Sections 5.1.5 and 5.1.6) in the sense that the form of the source function is expressed in
terms of ewective physical variables like temperature or velocity, which are not related by an
equation of state. In this case the application of the Wigner approach is a `luxurya which is not
justi"ed. This is a fortiori true since, as will be shown in the following, the Wigner approach is
mathematically not simpler than the classical current approach, of which it is a particular case.
Thus the space}time model [3] presented above (see Section 4.8) is more general than the Wigner
approach, albeit it is not more complicated and does not have more independent parameters.
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40For neutral particles, there are additional contributions to P
2
(k

1
, k

2
) which play a role for soft particles and which

will be neglected here.
41That these corrections can be important has also been shown in [102].
42 It is sometimes argued that the relevant q range in BEC is given by D~1 where D is a typical length scale of the source

and therefore for heavy ion reactions this should be allowed. This is not quite correct, because the shape of the correlation
function from which one determines the physical parameters of the source is not given just by the values of the correlation
function near the origin, but depends also on its values at large q.

In the second quantisation g(x, k) is de"ned in terms of the correlator Sas(k
i
)a(k

j
)T by the relation
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This is a natural generalisation of (4.126) to which it reduces in the limit k
i
"k

j
.

Accordingly, for the second-order correlation function one writes
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where Kk"(kk
1
#kk

2
)/2 and qk"kk

1
!kk

2
are the mean momentum and momentum di!erence of

the pair.40
The relation between this Wigner approach and the classical current approach is established by

expressing the r.h.s. of Eq. (4.127) in terms of the currents. One has
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2BU exp[!ikkzk] . (4.129)

The derivation of the Wigner formalism from the classical current formalism has the important
advantage that it avoids violations of quantum mechanical bounds as those mentioned previously.

Note that in the r.h.s. of Eq. (4.128) enters the o!-mass shell average momentum 1
2
(k

1
#k

2
)

which is not equal to the on-mass shell average K"1
2
JE2!m2

1
#m2

2
where E is the total energy

of pair (1, 2). This means among other things that in this approach it is not enough to postulate the
source function g in order to determine the second (and higher-order) correlation function C

2
, but

further assumptions are necessary. Usually one neglects the o!-mass shellness, i.e. one approxim-
ates E by the sum E

1
#E

2
where E

i
are the on-shell energies of particles (1, 2), which means that

one neglects quantum corrections41 which is permitted as long as k
1
!k

2
"q is small.42

As mentioned already, the use of the Wigner formalism is worthwhile within a true hydro-
dynamical approach when the relation with the equation of state is exploited. In this case the
probability to produce a particle of momentum k from the space}time point x depends on the #uid
velocity, uk(x), and the temperature, ¹(x), at this point, and one has
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(4.130)
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43 It is assumed that only directly produced particles have a coherent component.

Here, dpk is the volume element on the freeze-out hypersurface R where the "nal state particles are
produced. We will discuss applications of this approach in Section 5.

4.9.1. Resonances in the Wigner formalism
For a purely chaotic source, the formalism in order to take into account the e!ects of resonance

decays on the Bose}Einstein correlation function can be found, e.g. in [18,54]. An extension of this
approach is due to [56,101] which allows to consider also the e!ect of coherence and provides
rather detailed and subsequently, apparently, con"rmed predictions for heavy ion reactions. It is
based on the Wigner function formalism.

The correlation function of two identical particles of momenta k
1

and k
2

can be written as

C
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, k

2
)"1#(A

12
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21
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11
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22
) , (4.131)

where the matrix elements A
ij

are given in terms of source functions g(x, k) as follows:

A
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)T"Pd4xg(xk , kk)e*qkxk . (4.132)

A typical source function reads

g(xk , pk)"gdir
p

(xk , pk)# +
res/o,u,g,2

g
res?p

(xk , pk) (4.133)

where the labels dir and resPp refer to direct pions and to pions which are produced through the
decay of resonances (such as o, u, g, etc.), respectively.

The contribution from a particular resonance decay is estimated in [56,101] using kinematical
and phase space considerations as well as the source function of that resonance. The source
distribution for the direct production of pions and resonances is calculated assuming local
thermodynamical and chemical equilibrium as is appropriate for a hydrodynamical treatment.

gdira (xk , pk)"
2J#1
(2p)3 PR

pk dpk(x@k )d4(xk!x@k)
exp[[pkuk(x@k)!BakB

(x@k )!SakS
(x@k )]/¹&

(x@k)]!1
. (4.134)

Here a denotes the particular resonance and dpk is the di!erential volume element and the
integration is performed over the freeze-out hypersurface R. uk(x) and ¹

&
are the four-velocity of

the #uid element at point x and the freeze-out temperature, respectively. B and S are the baryon
number and the strangeness of the particle species labelled a, respectively, and k

B
and k

S
are the

corresponding chemical potentials. J is the spin of the particle.
This approach is then extended [56] to include also a coherent component resulting in a second-

order correlation function of the form

C
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)Re d

12
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12
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where p
%&&

is an e!ective chaoticity related to the true chaoticity p
dir

43 via

p
%&&

"p
dir

(1!f res)#f res . (4.136)
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Fig. 9. Intercept of two-particle correlation function in the presence of coherence and resonances (from Ref. [56]).

f res is the fraction of particles arising from resonances. The form of this equation is the same as that
derived previously for a partially coherent source within the current formalism and manifests the
characteristic two-component structure.

The sensitivity of the correlation function on the chaoticity parameter p
dir

can be estimated,
e.g. from the intercept (see Eq. (4.135))

I
o
"C

2
(k, k)"1#2p

%&&
!p2

%&&
. (4.137)

The fractions of pions produced directly (chaotically and coherently) and from resonances are
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(4.138)

with

f dir
#)

#f dir
#0

#f res"1 .

In Fig. 9 the intercept of the correlation function is shown as a function of p
dir

and f res. In order
to read o! the fraction of direct chaotically produced particles, p

dir
, from the intercept of

the correlation function, one has to extract the e!ective chaoticity p
%&&

according to Eq. (4.137)
and then correct for the fraction of pions from resonance decays. Note that p

%&&
(p

dir
. In parti-

cular, if a large fraction of pions arises from resonance decays, p
%&&

P1 and one needs very
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44 In some papers [103] pions originating from long-lived resonances are associated with a `haloa while those coming
form short-lived resonances or directly produced are related to a `corea. Then it is claimed among other things that the
`corea parameters of the source (like radius and j factor) can be obtained from the data just by eliminating the small
Q points and "tting only the remaining points. Even if such a separation would be clear cut (there are doubts about this
because of the u resonance), it would be of course dependent on the resolution of the detector.

precise measurements of the two-particle correlation function at small q to determine the true
chaoticity, p

dir
.

A further complication arises if a fraction of particles is the decay products of long-lived
resonances.44 This topic as well as the problem of misidenti"cation are discussed in [56].

4.10. Dynamical models of multiparticle production and event generators

Due to the lack of a full-#edged theory of multiparticle production in strong interactions
di!erent models of multiparticle dynamics were proposed. Bose}Einstein correlations measure-
ments have been used either to test a particular model or/and to determine some of its parameters.
Among other things these models were used to predict the dependence of the chaoticity on the type
of reaction. In the following, we will sketch the main theoretical ideas on which these models are
based and mention brie#y their relation to data.

One of the "rst models of particle production from which de"nite predictions on BEC can be
derived is the Schwinger model [104] for e`}e~ reactions. It visualises the source as an one-
dimensional string in a coherent state and thus predicts the absence of any bunching e!ect.
A similar prediction follows from the bremsstrahlung model [105]. Recoilless bremsstrahlung can
be described by a classical current which also corresponds to a coherent state. Given the fact that in
all hadron production processes BEC, i.e. a bunching e!ect has been seen, it follows that the above
two models are ruled out by experiment.

More complex predictions follow from a dual topological model due to Giovannini and
Veneziano [106] which associates the processes e`}e~Phadrons to a unitarity cut in one plane,
reactions induced by Pomeron exchange to a cut in two planes, and annihilation reactions p6 }p to
a cut in three planes. This model predicts then among other things that for p~p~ BEC the
intercepts C

2
(k, k) of the second-order correlation functions for the above reactions should satisfy

the following relation:

[Ce
`
e
~

2
(k, k)!2]/[Cpp

2
(k, k)!2]/[Cann

2
(k, k)!2]"1/1

2
/1
3

. (4.139)

(A similar, but quantitatively di!erent relationship is predicted for p`p~ correlations.)
Despite the fact that since the publication of this paper in 1977 many experimental BEC studies

of these reactions have been performed, the above predictions could not be tested quantitatively in
a convincing manner. This is due among other things to experimental di$culties (see Section 4.11)
and illustrates the unsatisfactory status of experimental BEC investigations. A qualitative remark
can however be made: the expectation that the annihilation reaction leads to more bunching than
other reactions is apparently con"rmed (see e.g. Ref. [12] and Section 2.1.1). As to the di!erence
between e`}e~ reactions and hadronic reactions the experimental situation is rather confused (see
also below).
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A somewhat related dynamical model based on Reggeon theory, has been already proposed in
[107]. A straightforward extension of this formalism to heavy ion reactions does not work as it
predicts that the longitudinal radius is of `hadronica size [108].

A di!erent approach to BEC based on the classical current formalism is proposed in [109]. The
currents are associated with the chains of the dual parton model, and contrary to what is assumed
in other applications of the classical current formalism, all the phases of these elementary currents
are "xed, so that the source is essentially coherent. This is a special case of the classical current
approach presented in Sections 4.2, 4.3 and 4.8 where allowance is made both for a chaotic and
coherent component. The model is intended to work for p}p reactions where the authors state that
resonances do not play an important role. It explains, according to the authors, the dependence of
the j parameter in the empirical formula for the second-order correlation function

C
2
"1#j exp(!R2q2) (4.140)

on the multiplicity and energy. Unfortunately, the claim that in p}p reactions pions are only
directly produced is unfounded. Furthermore, there are other factors which in#uence the multipli-
city dependence of j (see Section 6.2) which are not considered in [109] and which are of more
general nature.

An orthogonal point of view for the interpretation of the same j factor (also for directly
produced pions, only,) is due to [110]. In this approach the source is made of totally chaotic
elementary emitting cells which are occupied by identical particles subject to Bose}Einstein
statistics. Di!erent cells are independent so that correlations between particles in di!erent cells lead
to j"0, while correlations between particles in the same cell are characterised by j"1. From the
interplay of these two types of correlations, one obtains with an appropriate weighting, large
j values in e`}e~ reactions and small j values in p}p reactions, as in [109], but within a completely
di!erent approach.

We conclude the discussion of these two approaches by the following remarks. Besides the
reservations about the role of directly produced pions in BEC expressed above and which presents
the two approaches in a rather academic light, it is unclear whether the j factor in e`}e~ reactions
is larger than in p}p reactions as assumed in [110]. This issue awaits a critical analysis of the
speci"c experimental set-ups. The fact that quite di!erent approaches lead to similar conclusions
about the j factor con"rms that the parametrisation of the second-order correlation function in the
form (4.140) is (see also Section 2.2) inadequate.

We discuss now other two, closely related, approaches, which make more detailed predictions
about the form of the correlation function in e`}e~ reactions: Refs. [22,75] on the one hand, and
Refs. [23,111,121] on the other. Both approaches are based on a variant of the string model (for
a more extended review of this topic see e.g. [113]). Such a string represents a coloured "eld formed
between a quark q and an antiquark q6 , which tend to separate. Because of con"nement the
break-up of the string can be materialised only through creation of new qq6 pairs, which are the
mesons produced in the reaction.

The di!erence between the Schwinger model of con"nement on the one hand and the models of
Bowler and Andersson}Hofmann}RingneH r on the other is that in the former the "eld couples
directly and locally to a meson, while in the latter ones the quarks, which constitute the meson, are
created at di!erent points. This feature destroys the coherence inherent in the Schwinger model
and makes the Bose}Einstein bunching e!ect possible. For massless quarks the second-order
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45To make the model more realistic in Ref. [23] resonances were included according to the variant of the Lund model
(JETSET) in use at that time (1986) and agreement with e`}e~ data was found. Subsequently however it was pointed out
in [58] that some resonance weights used in [23] were incorrect, so and the agreement mentioned above was probably
accidental.

46What concerns e`}e~ reactions similar scepticism was expressed by Haywood [4].

correlation function can be approximated by the relation [23]

C
2
"1#Scos(i*A)/cosh(b*A/2)T , (4.141)

where *A denotes the di!erence between the space}time areas of coloured "elds spanned by the
two particles, i is the string tension and b a parameter characterising the decay probability of the
string. For massive quarks the formulae become more involved and were approximated analyti-
cally in [22] or calculated numerically in [23,111,112]. In this model the correlation function
depends both on the di!erence of momenta k

1
!k

2
as well as on their sum k

1
#k

2
, re#ecting the

correlation between the momentum of the particle and the coordinate of its production point. This
is a consequence of the fact that string models use a Wigner-function-type approach. From the
above equations it follows that there are two length scales in the problem, one associated with
i and the other with b. Phenomenologically these correspond to q

,
and q

M
. Both these lengths are

correlation lengths rather than geometrical radii. (As a matter of fact there is no geometrical radius
in the string model.) Their magnitudes are quite di!erent.

In both string approaches one obtains a di!erence between BEC for identically charged
and neutral pions as found in [71]. However while in [22] there is room for coherence, this is
apparently not the case for [23,111,112], which predict a totally chaotic source. Furthermore in
[22] an energy dependence of the BEC is predicted (the correlation function is expected to shrink
with increasing energy), while in [23,111,112] the correlation function does not depend on
energy.45

A rather discordant note in this string concerto [22,23] is represented by the paper by Scholten
and Wu [114]. These authors, using a di!erent hadronisation mechanism conclude that dynamical
correlations, at least in e`}e~ reactions dominate over BEC correlations so that BEC cannot be
used to infer information about the size and lifetime of the source.46 This point of view seems
too extreme, as it is contradicted by some simple empirical observations: in e`}e~ reactions,
as well as in all other reactions, correlations between identical particle are observed which are
much stronger than those of non-identical ones, the correlation functions are (in general) mono-
tonically decreasing functions of the momentum di!erence q and in nuclear reactions the `radiia
obtained from identical particle correlations increase with the mass number of the participating
nuclei. All these observations are in agreement with what one would expect from BEC, which
suggests that dynamical correlations cannot distort this picture too much. However a thorough
comparison of BEC in di!erent reactions, using the same experimental techniques, appears highly
desirable.

Event generators. The model [23] was implemented by Sjostrand [115] into JETSET under the
name LUBOEI by modifying a posteriori the momenta of produced pions so that identical pairs of
pions are bunched according to [23]. This manipulation `by handa violates energy}momentum
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47See, however, Ref. [116].
48For heavy ion reactions the `quantum molecular dynamicsa (QMD) model [117] attempts to surpass this de"ciency

by using wave functions rather than probabilities as input. However, this model also neglects (anti)symmetrisation e!ects
and cannot be used for interferometry studies.

49 It is interesting to mention that for one string Andersson and Hofmann [23] proposed a formulation of the BEC
e!ect in terms of amplitudes. However this procedure cannot be used to generate events.

conservation which was imposed at the beginning in JETSET. To compensate for this, the
momenta are rescaled so that energy}momentum conservation is restored. However this rescaling
introduces spurious long-range correlations, which bias the BEC. Nevertheless, in general this
program leads to a reasonable description of the bunching e!ect in the second-order correlation
function.47 More re"ned features of BEC which re#ect the quantum mechanical essence of the
e!ect, cannot be obtained of course. One reason for this, of rather technical nature, is due to the fact
that the ad hoc modi"cation of two-particle correlations does not yet include many-body correla-
tions, re#ected in the symmetrisation (or antisymmetrisation) of the entire wave function.

Another reason of fundamental character is that event generators like any Monte Carlo
algorithm deal in general with probabilities48 and therefore cannot account for quantum e!ects,
which are based on phases of amplitudes.49 The event generator JETSET was further developed by
LoK nnblad and SjoK strand [118,119] and used to estimate the in#uence of BEC on the determination
of the mass of= in e`}e~ reactions, a subject of high current interest for the standard model and in
particular for the search of the Higgs particle. This e!ect was also studied using di!erent event
generators in [120,121]. The argument of LoK nnblad and SjoK strand is the following. Consider the
reaction e`}e~P=`=~Pq

1
q6
2
q
3
q6
4

when both ='s decay into hadrons. Then according to
[122] the typical space}time separation of the decay vertices of the=` and the=~ is less than
0.1 fm (at LEP 2 energies) and thus much smaller than a typical hadronic radius (&0.5 fm). There
will thus be a Bose}Einstein interference between a pion from the=` and a pion (with the same
charge) from the=~ and one cannot establish unambiguously the `parenthooda of these pions.
This prevents then in this model a precise determination of the invariant mass of the='s. In [118]
algorithms for the inclusion of this e!ect into the determination of the mass of the= are proposed
and for certain scenarios mass corrections of the order of 100 MeV at 170GeV c.m. energy are
obtained. However, as emphasised in [118] other scenarios with less or no e!ect of BEC on the
mass determination of the= are possible. Thus in [120,121] e!ects of the order of only 20MeV are
found. For more details we refer the reader to the original literature.

This aspect of BEC is interesting in itself as it illustrates the possible applications of this e!ect in
electroweak interactions, a domain which is beyond the usual application domain of BEC, i.e. that
of strong interactions.

The Lund model was applied also to heavy ion reactions and then extended to include BEC
(e.g. the SPACER version [55] of the Lund model). The topic of event generators for heavy ion
reactions is of current interest because of the ongoing search for quark}gluon plasma. Padula et al.
[95] suggested to use for this purpose the Wigner function formalism in order to take into account
explicitly the correlation between momenta and coordinates, as implied by the inside}outside
cascade approach. This is evidently another way of expressing the non-stationarity of the correla-
tion function mentioned above. (An explicit introduction of momentum}coordinate correlations in
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50E.g. it is unclear to us whether the `purea multiple scattering approach of [126] satis"es the above constraint.

particle physics event generators like JETSET/LUBOEI is not necessary, because the non-
stationarity is delivered `free housea by the string model used in the LUND generator.)

On the other hand, the Wigner formalism may present also another advantage as emphasised
more recently by Bialas and Krzywicki [123]. This has to do with the important di$culty
mentioned above and which is inherent in all event generators, namely the probabilistic nature of
Monte Carlo methods. The Wigner function has in certain limits the meaning of a wave function
and thus provides quantum amplitudes. The proposal of Bialas and Krzywicki consists then in
starting from the single-particle distribution X

0
(k) constructed from non-symmetrised particle

wave functions as produced by conventional event generators and writing the Wigner function

g(k; x)"X
0
(k)w(k; x) , (4.142)

where w(k; x) is the conditional probability that given that the particles with momenta k
1
, k

2
,2, k

n
are present in the "nal state, they are produced at the points x

1
,2,x

n
. Then the art of the model

builder consists in guessing the probability w(k; x). This may be easier than guessing from the
beginning the exact Wigner function. For example, a simple ansatz would be to assume that the
likelihood to produce a particle from a given space point is statistically independent of what
happens to other particles. This means that w(k; x) can be factorised in terms of the individual
particles. Implementations of this scheme were discussed in [124,125].

When using the Wigner formalism or any model (like those used in event generators) which
speci"es momenta and coordinates simultaneously, one must of course watch that the correlations
between momenta and coordinates do not become too strong. This apparently has not always
been done.50

That such a procedure is dangerous since it can lead to unphysical antibunching e!ects, i.e. to the
violation of unitarity was already mentioned in [89] (see Section 4.6). This point has been reiterated
recently, e.g. in [127}129].

Concluding this section one should emphasise that event generators are just an experimental
tool, sometimes useful in the design of detectors or for getting rudimentary information about
experimentally inaccessible phase. Often they are however abused, e.g. to search for `newa
phenomena: if agreement between data and event generators is found, one states that no `newa
physics was found. Such a procedure is unjusti"ed, because agreement with a model or an event
generator is often accidental. Furthermore, for the reasons mentioned above event generators
cannot be used to obtain the `truea correlation function, i.e. they are no substitute for a bona"de
HBT experiment (see also [130] for a critical analysis of transport models from the point of view of
interferometry).

4.11. Experimental problems

The confrontation of model predictions with experimental BEC data has been hampered by two
major facts: (i) most models are idealisations, i.e. they use assumptions which are too strong.
Examples of such assumptions are: neglect of "nal state interactions, boost invariance, particular
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analytical forms of the correlation functions; (ii) for various reasons in almost no BEC experiment
so far a `truea or `completea correlation function was measured, i.e. a correlation function as
de"ned by

C
2
(k

1
, k

2
)"P

2
(k

1
, k

2
)/P

1
(k

1
)P

1
(k

2
) . (4.143)

Here P
2

and P
1

are the double and single inclusive cross sections, respectively. What is measured
usually is instead a function which di!ers from Eq. (4.143) in several respects.

The normalisation of C
2

is not done in terms the product of single inclusive cross sections P
1

but
in terms of a `backgrounda double inclusive cross section, which is obtained either by considering
pairs of (identically charged) particles which come from di!erent events, or by considering
oppositely charged particles, or by simulating P

2
with an event generator which does not contain

BEC.
One does not (yet) measure the full correlation function C

2
in terms of its six independent

variables, but rather projections of it in terms of single variables like the momentum di!erence q,
rapidity di!erence y

1
!y

2
, etc.

Last but not least, the intercept of the correlation function, which contains important informa-
tion about the amount of coherence, cannot be really measured at present because (a) one does not
yet control su$ciently well the "nal state interactions which contribute to the intercept; (b) its
experimental determination implies an extrapolation to q"0. Such an extrapolation can be
performed only if the analytical form of the correlation function at q50 is known, which is not
the case.

For these reasons at present it is di$cult to test quantitatively a given model, except when its
predictions are very clear cut. This circumstance limits certainly the usefulness of BEC as a tool in
determining the exact dynamics of a reaction.

5. Applications to ultrarelativistic nucleus}nucleus collisions

5.1. BEC, hydrodynamics and the search for quark}gluon plasma

The use of BEC in the search for quark}gluon plasma is in most cases based on hydrodynamics.
This is so because the space}time evolution of the system can be assumed to be given by the
equations of hydrodynamics the solutions of which are di!erent depending whether a QGP is
formed or not. In this way, hydrodynamics also provides information about the equation of state
(EOS). QGP being a (new) phase it is described by a speci"c EOS which is di!erent from that of
ordinary hadronic matter. The proof that this phase has been seen must include information about
its EOS and thus the combination of hydrodynamics with BEC constitutes the only consistent way
through which the formation of QGP can be tested.

QCD predicts that the phase transition from hadronic matter to QGP takes place only when
a critical energy density is exceeded. To measure this density we need to know the initial volume of
the system. While via photon interferometry (see Sections 4.5 and 4.6) one can in principle measure
the dimensions (and thus the energy density) of the initial state, hadron interferometry yields
information only about the "nal freeze-out stage when hadrons are created. To obtain information
about the initial state with hadronic probes, hydrodynamical models have to be used in order to
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51 In the following the concept of length refers to space}time.

extrapolate backwards from the "nal freeze-out stage where hadrons are created, to the interesting
initial stage. The lifetime of the system as given by BEC is also an important piece of information
for QGP search. Indeed, in order to decide whether we have seen the new phase, we have to
measure the lifetime of the system. Only lifetimes exceeding signi"cantly typical hadronic lifetimes
(10~23 s) could prove the establishment of QGP (see below).

5.1.1. General remarks about the hydrodynamical approach
Besides the main advantages of hydrodynamics related to the information about initial condi-

tions, freeze-out and equation of state, for the study of BEC in particular hydrodynamics is very
useful because it provides the single inclusive distributions which are intimately connected with
higher-order distributions as well as the weights and the space}time and momentum distributions
of resonances, which strongly in#uence the correlations. The phenomenological applications of the
hydrodynamical approach to data are however hampered by two circumstances.

(i) While the ultimate goal of BEC is the extraction of the minimum set of parameters which
include radii and coherence lengths both for the chaotic and coherent components of the source, in
practice, mainly because of limited statistics (but also because of an inadequate analysis of the data)
one has to limit oneself to the determination of a reduced number of parameters, which we call in
the following `e!ective radiia R

%&&
and `e!ective chaoticitya p

%&&
. In reality, R

%&&
is a combination of

correlation lengths51 ¸ and geometrical lengths R as introduced in Sections 4.3 and 4.8. Only in the
particular case where one length scale is much smaller than the other, can one assume that one
measures a `purea radius or a `purea correlation length. For simplicity, in the following, we shall
assume that this is the case and in particular we assume that R<¸ so that, R

%&&
reduces to ¸. This

limit might perhaps correspond to what is seen in experiment, if one considers the expansion of the
system in the hadronic phase. (In the high-temperature limit ¸+¹~1, see Section 4.8).

(ii) The presentation of the data is still biased by theoretical prejudices. Instead of a consistent
hydrodynamical analysis, much simpli"ed models are used (see Section 5.1.5 where these models
are presented under the generic name of quasi-hydrodynamics) for this presentation and therefore
to obtain the real physical quantities, one would have to solve a complicated mathematical
`inversea problem, i.e. one would have to reconstruct the raw data from those presented in the
experimental papers and then apply the correct theoretical analysis to these. This has not been
done so far and even if the statistics is su$cient for this purpose, the outcome is questionable
because of the di$culties implied by the numerics. (That is why it would be desirable that
experimentalists and theorists perform a joint analysis of the data or at least that the data should be
presented also in `rawa form.)

The nearest approximation to the solution of the `inversea problem found in the literature, is
that of [101,150,131] based on the application of the HYLANDER code by the Marburg group: It
consists in "tting the results of the hydrodynamical calculation to the Gaussian form used by
experimentalists:

C
2
(k

1
, k

2
)"1#j exp[!1

2
q2
,
R2
,
!1

2
q2
065

R2
065

!1
2
q2
4*$%

R2
4*$%

],1#j expA!
1
2
+ (qR)2B (5.1)
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52 In [132] it was recommended that experimentalists should use the more complete formula

C
2
(k

1
, k

2
)"1#j exp[!1

2
q2
,
R2
,
!1

2
q2
065

R2
065

!1
2
q2
4*$%

R2
4*$%

!2q
065

q
,
R2

065,
] , (5.2)

where 2q
065

q
,
R2

065,
is called `crossa term. For a more detailed discussion of its meaning and dependence on the

coordinate system, see. Ref. [133]. Of course, in view of the de"ciencies of the entire phenomenological procedure
outlined above and discussed in greater length in Section 5.1.5, these details are of limited importance. In particular they
do not a!ect the conclusions discussed here.

53 In [134,135] a distinction is made between the `locala length of homogeneity ¸
)
(x, k) and the `hydrodynamicala

length, %
)
(x) which is the ensemble average of the former.

54 In most applications particles produced with momenta pk pointing into the interior of the emitting isotherm
(pkdpk(0) were assumed to be absorbed and therefore their contribution to the total particle number was neglected. In
Ref. [137] this e!ect was indeed estimated to be negligible and recent attempts to reconsider it could not change this
conclusion. Another e!ect is the interaction of the freeze-out system with the rest of the #uid. This e!ect can be estimated
by comparing the evolution of the #uid with and without the frozen-out part. This is done by equating the frozen-out part
with that corresponding in the equation of hydrodynamics to the case pk"0. The #uid parameters are modi"ed by this
procedure at a level not exceeding 10% [138]. The in#uence of the freeze-out mechanism on the determination of radii
via BEC has been discussed recently in several papers; see. e.g. [139] and references quoted therein.

and comparing with the inverse width of the correlation function as presented in the experimental
papers.52 Here qk,pk

1
!pk

2
, Kk,1

2
(pk

1
#pk

2
) and q

,
and K

,
denote the components of q and K in

beam direction, and q
M

and K
M

the components transverse to that direction; q
065

is the projection of
the transverse momentum di!erence, q

M
on the transverse momentum of the pair, 2K

M
, and q

4*$%
the

component perpendicular to K
M
. (For a source with cylindrical symmetry, the two-particle

correlation function can be expressed in terms of the "ve quantities K
,
, K

M
, q

,
, q

4*$%
and q

065
.)

R
,
, R

4*$%
, R

065
are e!ective parameters, associated via Eq. (5.1) to the corresponding q components.

Eq. (5.1) is equivalent to an expansion of the correlation function C(q, K) for small q. The use of
Eq. (5.1) for the representation of correlations data implies then that one does not measure the
geometrical radius of the system but the length of homogeneity, which means that energy density
determinations based on BEC are an overestimate.53 To take into account the fact that the
correlation function depends in general not only on the momentum di!erence q"k

1
!k

2
but also

on the sum K"1
2
(k

1
#k

2
), the parameters R and j are assumed to be functions of K and rapidity

1
2
(y

1
#y

2
).

Hadron BEC refer to the freeze-out stage. This stage is usually described by the Cooper}Frye
formula [136]:

E
dN
dk

"

g
i

(2p)3Pp
pkdpk

exp((pkuk!k
s
!k

b
)/¹

&
)!1

, (5.3)

which describes the distribution of particles with degeneracy factor g
i

and four-momentum
pk emitted from a hypersurface element dpk with four-velocity uk.54 After the cascading of the
resonances we obtain the "nal observable spectra.

5.1.2. Transverse and longitudinal expansion
The equations of hydrodynamics are non-linear and therefore good for surprises. An illustration

of this situation is represented by the realisation, described in more detail below, that the naive
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Fig. 10. Bose}Einstein correlation functions in longitudinal and transverse direction, for the three-dimensional (solid
lines) and the one-dimensional calculations (dashed lines) (from Ref. [101]).

55 In Ref. [145] the dependence of the e!ective transverse radius on the transverse velocity "eld was investigated for
a "xed freeze-out hypersurface. The e!ects of transverse expansion on the shape and position of the hypersurface are not
considered there.

intuition about the role of transverse expansion in the determination of the transverse and
longitudinal radius may be completely misleading. Only a systematic analysis based on (3#1)-D
hydrodynamics clari"ed this issue.

In the present section we will discuss Bose}Einstein correlations of pions and kaons produced in
nuclear collisions at SPS energies in the framework of relativistic hydrodynamics. Concrete
applications were done for the symmetric reactions S#S and Pb#Pb at 200 AGeV. Many of the
theoretical results were predictions at the time they were obtained. These predictions were
subsequently con"rmed in experiment. In [140] it was found that the transverse radius extracted
from data on Bose}Einstein correlations (BEC) for O#Au at 200AGev reached in the central
rapidity region a value of about 8 fm. It was then natural to conjecture that this could be an
indication of transverse #ow [141}143]. In the meantime the experimental observation in itself has
been quali"ed [144] and it now appears that the transverse radius obtained from the BEC data
does not exceed a value of 4}5 fm (see however Ref. [143]). Motivated by this situation in Ref. [101]
an investigation55 of the role of three-dimensional hydrodynamical expansion on the space}time
extension of the source was performed and compared with a (1#1)-D calculation.

Contrary to what one might have expected it was found that transverse yow does not increase
the transverse radius. On the other hand, a strong dependence of the longitudinal radius on the
transverse expansion was established.

Fig. 10 shows two typical examples of the Bose}Einstein correlations as functions of q
,

and
q
M

for the one- and the three-dimensional hydrodynamical solution. The dependence of C
2
(q
,
) on

transverse expansion agrees qualitatively with what one would expect. For a purely longitudinal
expansion, the e!ective longitudinal radius of the source is larger than in the case of three-
dimensional expansion, which is re#ected in a decrease of the width of the correlation function (see
also in Fig. 11 below).

On the other hand, the results for C
2
(q

M
) were at a "rst glance rather surprising. Naively one

might have expected that the transverse #ow would lead to an increase of the transverse radius, i.e.,
to a narrower correlation function C

2
(q

M
). However, in Fig. 10 the curves that describe the
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Fig. 11. Dependence of the longitudinal and transverse radii extracted from Bose}Einstein correlation functions on the
rapidity y

K
and average momentum K

M
of the pair. As before, solid lines correspond to the three-dimensional and dashed

lines to the one-dimensional results. The open circles indicate values of R
,

obtained from Eq. (5.4) (from Ref. [101]).

56 In this reference Eq. (5.4) is used to disprove the applicability of hydrodynamics to p}p reactions in the ISR energy

range (Js"53GeV). Such a conclusion seems dangerous given the approximations involved both in the derivation of
this formula as well as in the interpretation of the BEC measurements in the above reactions.

one- and the three-dimensional results are almost identical. If anything, one would conclude that
the e!ective transverse radius is smaller in the presence of transverse expansion.

This e!ect can however be explained if one takes a closer look at the details of the hydrodynamic
expansion process as investigated in Ref. [101]. Due to the correlation between the space}time
point where a particle is emitted, and its energy}momentum, the e!ective radii obtained from
Bose}Einstein correlation data present a characteristic dependence on the average momentum of
the pair, Kk. Fig. 11 shows the dependence of the e!ective radii R

,
, R

4*$%
and R

065
on the rapidity

y
K

and the mean transverse momentum of the pair K
M
, both for the one- and for

the three-dimensional calculation. The longitudinal radius R
,

becomes considerably smaller
(by a factor of 2}3) if transverse expansion is taken into account. For the one-dimensional case, an
approximate analytic expression has been derived for the y

K
- and the K

M
-dependence of the

longitudinal `radiia in Refs. [146,147]56 (see also [95]):

R
,
"J(2¹

&
/m

M
)q

o
/cosh(y

K
) , (5.4)
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57Expression (5.4) for R
,

denotes in fact the length of homogeneity ¸
)

mentioned above. It refers to the region within
which the variation of Wigner function is small. By de"nition ¸

)
4R where R is the geometrical radius.

where m
M
"(m

M1
#m

M2
)/2 is the average transverse mass of the two particles, ¹

&
is the freeze-out

temperature and q
o
"(Ru

,
/Rx)~1 is the inverse gradient of the longitudinal component of the

four-velocity in the centre (at x"0).57 In [101] one "nds that this approximate expression
describes R

,
(K

M
, y

K
) for S#S reactions quite well, both for the one- and the three-dimensional

case (see Fig. 11). However for Pb#Pb reactions the same formula fails to account for the data
[148]. This is not surprising, because Eq. (5.4) is based on the assumption of boost invariance, i.e.
no stopping. This assumption is not justi"ed at SPS energies where there is considerable stopping.
The inelasticity increases with atomic number and this may explain the breakdown of the above
formula. This exempli"es the limitations of the boost-invariance assumption, an assumption which
must not be taken for granted but in special circumstances.

In [149] it was proposed to use the information obtained from "tting the single inclusive
distribution to constrain the parameters that enter into the hydrodynamic description, and then to
calculate the transverse radius directly. Indeed, let R denote the hypersurface in Minkowski space
on which hadrons are produced. Then one can de"ne, e.g. a transverse radius

R
M
"

:RRpkdpk/(exp[(pkuk!k)/¹]!1)
:R pkdpk/(exp[(pkuk!k)/¹]!1)

, (5.5)

where uk ,¹ and k denote the four-velocity, temperature, and chemical potential on the hypersur-
face R, respectively as in Eq. (5.3).

It is interesting to note that this method for the determination of transverse radii based on the
single inclusive cross sections provides a geometrical radius while the use of the second-order
correlation function provides a coherence length (length of homogeneity).

Comparing the e!ective transverse radius R
M

extracted from the Bose}Einstein correlation function to the mean
transverse radius as calculated directly in [149] according to Eq. (5.3), one "nds in [101] that the two results agree to an
accuracy of about 10%. This conclusion is con"rmed and strengthened in a more recent study by Schlei [131] for kaon
correlations.

Of course, this approach can be used only if a solution of the equations of hydrodynamics is
available; with quasi-hydrodynamical methods this is not possible.

5.1.3. Role of resonances and coherence in the hydrodynamical approach to BEC
This problem was investigated using an exact (3#1)-D numerical solution of hydrodynamics

in [150].
The source distribution g(x, k) was determined from a three-dimensional solution of the relativis-

tic hydrodynamic equations. Fig. 12 illustrates the e!ect of successively adding the contributions
from o,u,D and g decays to the BEC correlation functions of directly produced (thermal)
n~ (dotted lines), in longitudinal and in transverse direction. The width of the correlation
progressively decreases as the decays of resonances with longer lifetimes are taken into account,
and the correlation loses its Gaussian shape. The long-lived g leads to a decrease of the intercept.

Pion versus kaon interferometry. Ideally, a comparison of pion and kaon interferometry should
lead to conclusions concerning possible di!erences in the space}time regions where these particle
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Fig. 12. Bose}Einstein correlation functions of negatively charged pions, in longitudinal and transverse direction. The
separate contributions from resonances are successively added to the correlation function of direct (thermal) n~ (dotted
line). The solid line describes the correlation function of all n~ (from Ref. [156]).

decouple from the hot and dense matter. It was proposed that kaons may decouple (freeze out) at
earlier times and higher temperatures than pions [151]. Indeed, preliminary results had indicated
that the e!ective longitudinal and transverse source radii extracted from nn correlations were
signi"cantly larger than those obtained from KK correlations [152]. However, seen in Fig. 12, the
BEC of pions are strongly distorted by the contributions from resonance decay. It was pointed
out in Ref. [52] in a study based on the Lund string model that such distortions are not present
for the BEC of kaons, and that consequently for the e!ective transverse radii one expects
R

M
(KB)(R

M
(nB), even in the absence of any di!erence in the freeze-out geometry of directly

produced pions and kaons. These conclusions were con"rmed in [156] within the hydrodynamical
approach and one found furthermore that this e!ect is even more pronounced if one considers
longitudinal rather than transverse radii. Furthermore, the interplay between coherence and
resonance production which was not considered in [52] was studied in [150]. There are also some
striking di!erences between [52,150] in the resonance production cross sections used.

In Fig. 13, BEC functions of n~ (solid lines) and of K~ (dashed lines) are compared, at k
M
"0

and k
M
"1 GeV/c, respectively. The dotted lines correspond to the BEC function of thermally

produced n~. It can be seen that the distortions due to the decay contributions from long-lived
resonances disappear only at large k

M
. Fig. 14 shows the e!ective radii R

,
,R

4*$%
and R

065
as

functions of rapidity and transverse momentum of the pair, both for n~n~ (solid lines) and for
K~K~ pairs (dashed lines). For comparison, the curves for thermally produced pions (dotted lines)
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Fig. 13. Correlation functions of all n~ (solid lines), thermal n~ (dotted lines) and all K~ (dashed lines), for k
M
"0 and for

k
M
"1GeV/c (from Ref. [56]).

Fig. 14. Dependence of the longitudinal and transverse radii extracted from Bose}Einstein correlation functions on the
rapidity y

k
and average momentum k

M
of the pair, for all n~ (solid lines), thermal n~ (dotted lines) and all K~ (dashed

lines). The full circles were obtained by substituting the value St
&
(z"0, r

M
)T"2 fm/c for the average lifetime of the

system (calculated directly from hydrodynamics by averaging over the hypersurface) into Eq. (5.4), with ¹
&
"0.139GeV

(from Ref. [56]).

are also included. The e!ective longitudinal radii extracted from n~n~ correlations are consider-
ably larger than those obtained from K~K~ correlations. In the central region the two values for
R
,

di!er by a factor of &2. For the transverse radii, the factor is &1.3. A comparison between
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Fig. 15. n~n~ Bose}Einstein correlation functions in the presence of partial coherence (from Ref. [56]).

results for K~ and thermal n~ shows that part of this e!ect can be accounted for by kinematics
(the pion mass being smaller than the kaon mass; see also Eq. (5.4)). Nevertheless, the large di!er-
ence between the widths of pion and kaon correlation functions is mainly due to the fact that pion
correlations are strongly a!ected by resonance decays, which is not the case for the kaon
correlations. In the hydrodynamic scenario of Ref. [56], about 50% of the pions in the central
rapidity region are the decay products of resonances [149], while less than 10% of the kaons are
created in resonance decays (KHPKn dominates, contributing with about 5%).

In Ref. [56] the problem of coherence within the hydrodynamical approach to BEC was also
investigated. Fig. 15 shows the n~n~ correlation functions in the presence of partial coherence. In
order to extract e!ective radii from Bose}Einstein correlation functions in the presence of partial
coherence, Eq. (5.1) must be replaced by the more general form

C
2
(k

1
, k

2
)"1#j ) p2

%&&
expC!

1
2
+ (qR)2D#Jj ) 2p

%&&
(1!p

%&&
)expC!

1
4
+ (qR)2D . (5.6)

5.1.4. Comparison with experimental data
Some of the predictions made in [56] for S#S reactions could be checked experimentally

in Refs. [153,154], in particular the rapidity and transverse momentum dependence of radii and
remarkable agreement was found. In [155] the hydrodynamical calculations were extended
to Pb#Pb reactions and compared with S#S reactions and, where data were available,
with experiment. The calculation of Bose}Einstein correlations (BEC) was performed using the
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Fig. 16. E!ective radii extracted from Bose}Einstein correlation functions as a function of the rapidity y
k
of the pair and

the transverse average momentum K
M

of the pair for all pions (from Ref. [155]).

58The EOS used in the hydrodynamical studies quoted above included a phase transition from QGP to hadronic
matter. How critical this assumption is for the agreement with data is yet unclear and deserves a more detailed
investigation. On the other hand, the very use of hydrodynamics is based on the assumption of local equilibrium, and this
equilibrium is favoured by the large member of degrees of freedom due to a QGP.

formalism outlined in Ref. [150] including the decay of resonances. The hadron source was
assumed to be fully chaotic.

Figs. 16 and 17 show the calculations for the e!ective radii R
,
, R

4*$%
and R

065
as functions of

rapidity y
K

and transverse momentum K
M

of the pion pair compared to the corresponding NA35
and preliminary NA49 data [157,158], respectively. All these calculations, which in the case of
S#S had been true predictions, agree surprisingly well with the data.58 This suggests that our
understanding of BEC in heavy ion reactions has made progress and con"rms the usefulness of the
Wigner approach when coupled with full-#edged hydrodynamics. An important issue in compar-
ing data with theory is the detector acceptance of a given experiment. This is also discussed in detail
in [155].

Another application of hydrodynamics to the QGP search in heavy ion reactions is due to Rischke and Gyulassy [159]
who investigate the ratio r"R

065
/R

4*$%
. Based on considerations due to Pratt [100], this quantity had been proposed by
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Fig. 17. E!ective radii extracted from Bose}Einstein correlation functions as a function of the transverse average
momentum K

M
of the pair for all pions compared with data (from Ref. [155]).

59 I am indebted to B.R. Schlei for this remark.

Bertsch and collaborators [160] as a signal of QGP. Under certain circumstances one could expect that for a long-lived
QGP phase r should exceed unity, while for a hadronic system, due to "nal state interactions, the out and side sizes
should be comparable.

The authors of [159] performed a quantitative hydrodynamical study of r in order to check whether this signal survives
a more realistic investigation, albeit they did not take into account resonances. For directly produced pions it is found
that r indeed re#ects the lifetime of an intermediate (QGP) phase. However we have seen from [56,155], that for pion
BEC, when resonances are considered, hydrodynamics with an EOS containing a long-lived QGP phase, leads (in
agreement with experiment) to values of r of order unity.

To avoid this complication, in [161] it was proposed to consider kaons at large k
M
. However even this proposal may

have to be quali"ed, besides the fact that it will be very di$cult to do kaon BEC at large k
M
. Firstly, one has to recall that

the entire formalism on which the r signal is based and in particular the parametrisation (5.1) is questionable. Secondly it
remains to be proved that this signal survives if one imposes simultaneously the essential constraint due to the single
inclusive distribution.59 Furthermore, it is unclear up to what values of k

M
the Wigner formalism, (which is a particular

case of the classical current formalism) on which the theory is based, is applicable. For these reasons the determination of
the lifetime of the system via `purea hydrodynamical considerations is certainly an alternative which deserves to be
considered seriously, despite its own di$culties.
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60A recent experimental paper [45] where such a procedure is used is a good illustration of the limits of quasi-
hydrodynamical models. The analysis here concentrates on the resolution of the ambiguity between temperature and
transverse expansion velocity of the source. It is clear that such an ambiguity is speci"c to quasi-hydrodynamics and is
from the beginning absent in a correct hydrodynamical treatment. Moreover even this result may have to be quali"ed
given some assumptions which underlay this analysis. To quote just two: (i) The assumption of boost invariance made
in [45] decouples the longitudinal expansion from the transverse one. This not only a!ects the conclusions drawn
in this analysis but prevents the (simultaneous) interpretation of the experimental rapidity distribution. (ii) The
neglect of long-lived resonances which strongly in#uences the j factor and thus also the extracted radii. Of course,
despite the richness of the data, no attempt to relate the observations to an equation of state can be made within this
approach.

61We remind that the classical current formalism, in opposition to the Wigner function formalism, does not apply only
to small q and to semiclassical situations. Furthermore it allows for a correct treatment of new phenomena like
particle}antiparticle correlations.

62For each value of K a Gaussian ellipsoid is described by three spatial extensions, one temporal extension, three
components of the velocity in the local rest frame and the three Euler angles of orientation.

63To consider such an approach as `model independenta [165,179] is misleading.

5.1.5. Bose}Einstein correlations and quasi-hydrodynamics
As mentioned already, the initial motivation for proposing the Wigner function formalism for

BEC was to explain why the experimentally observed second-order correlation functions C
2

were
depending not only on the momentum di!erence q"k

1
!k

2
but also on their sum K"k

1
#k

2
.

However in the mean time it was shown [33,3] that this feature follows from the proper application
of the space}time approach in the current formalism even without assuming expansion. Further-
more, the Wigner formalism is useful only at small q and cannot be applied in the case of strong
correlations between positions and momenta while the current formalism is not limited by these
constraints. As explained above the use of the Wigner formalism can be defended from the point of
view of economy of thought if combined with bona"de hydrodynamics and an equation of state.

This notwithstanding, besides a few real, albeit numerical, hydrodynamical calculations, most
phenomenological papers on BEC in heavy ion reactions (see e.g. [67,162,163,102,164}168,
68,69,169}178] have used the Wigner formalism without a proper hydrodynamical treatment, i.e.
without solving the equations of hydrodynamics; hydrodynamical concepts like velocity and
temperature were used just to parametrise the Wigner source function. While such a procedure
may be acceptable as a theoretical exercise, it is certainly no substitute for a professional analysis of
heavy ion reactions. This is a fortiori true when real data have to be interpreted.60

As exempli"ed in previous sections such a procedure is unsatisfactory, among other things
because it can lead to wrong results.

The use of this `quasi-hydrodynamicala approach is even more surprising if one realises the fact
that the Wigner formalism not only is not simpler than the more general current61 formalism but it
is also less economical. The number of independent parameters necessary to characterise the BEC
within the Wigner formalism of Ref. [166] is62 10, i.e. it is as large as that in the current formalism.
However the 10 parameters of [166] describe a very particular source,63 as compared with that of
the current formalism: besides the fact that the correlation function source is assumed to be
Gaussian, it is completely chaotic and it can provide only the length of homogeneity ¸

)
[67]. For

the search of quark}gluon plasma, however, the geometrical radius R is relevant, because the
energy density is de"ned in terms of R and the use of ¸

)
instead of R leads to an overestimate of the
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64One may argue that the `length of homogeneitya [67] ¸
)

de"ned in terms of the Wigner function is a particular case
of the correlation length ¸ de"ned in terms of the correlator (see Section 4.3). While ¸

)
is always limited from above by R,

¸ can be either smaller or larger than R.
65Even if a Gaussian form would hold for directly produced pions, resonances would spoil it [56,155,131].

energy density.64 Furthermore, the physical signi"cance of the parameters of the Wigner source is
unclear if the Gaussian assumption does not hold.65 Not only is there no a priori reason for
a Gaussian form, but on the contrary, both in nuclear and particle physics as well as in quantum
optics, there exists experimental evidence that in many cases an exponential function in DqD is at
small q a better approximation for C

2
than a Gaussian. Furthermore, in the presence of coherence,

no single simple analytical function, and in particular no single Gaussian is expected to describe
C

2
. This is a straightforward consequence of quantum statistics.
Given the fact that good experimental BEC data are expensive both in terms of accelerator

running time and man power, the use of inappropriate theoretical tools, when more appropriate
ones are available, is a waste which has to be avoided. For the reasons quoted above we will not
discuss in more detail the numerous and sometimes unnecessarily long papers which use quasi-
hydrodynamical methods.

Concluding remarks. In a consistent treatment of single and double inclusive cross sections for
identical pions via a realistic hydrodynamical model, resonances play a major role leading to an
increase of e!ective radii of sources. E!ective longitudinal radii are more sensitive to the presence
of resonances than transverse ones.

From the hydrodynamical treatment we learn that the hadron source (the real "reball) is
represented by a very complex freeze-out hypersurface (see Ref. [155]). The longitudinal and
transverse extensions of the "reball change dynamically as a function of time, rather than show up
in static e!ective radii. Thus, the interpretation of BEC measurements is also complicated.

When no quantitative comparison with data is intended, besides the current formalism, analyti-
cal approximations of the equations of hydrodynamics can be useful, because they allow a better
qualitative understanding of hydrodynamical expansion. However, when a quantitative interpreta-
tion of experiments is intended and in particular a connection with the equation of state is looked
for, the only recommendable method is full-#edged hydrodynamics.

5.1.6. Photon correlations and quasi-hydrodynamics
Photon correlations have been investigated within the context of quark}gluon plasma search,

since they present certain methodological advantages as compared with hadrons. While experi-
mentally genuine photon BEC in high-energy heavy ion reactions have not yet been unambigu-
ously identi"ed, because of the strong n0 background and the small cross sections for photon
production, there are several theoretical studies devoted to this topic. The advantage of photon
BEC resides in the fact that, while correlations between hadrons are in#uenced by "nal state
interactions, photon correlations are `cleana from this point of view. For high-energy physics,
photons present another important advantage that they can provide direct information about the
early stages of the interaction when quarks and gluons dominate and hadrons have not yet been
created. In particular photon BEC contain information about the lifetime of the quark}gluon
plasma [84}87,180,89]. Among other things it was argued, e.g. in [180] and con"rmed in [89]
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using a more correct formalism (see below), that the correlation function C
2

in the transverse
direction can serve as a signal for QGP as it is sensitive to the existence of a mixed phase.

Unfortunately, some of these studies (Refs. [84}87,180]) besides being based on quasi-hydrodyn-
amics, use an input formula for the second-order BEC, which is essentially incorrect (see Section
4.6). Besides this, some approximations made in [84], e.g. are inadequate. This question was
analysed in more detail in [89] where it was found that only some of the results of Ref. [84] survive
a more critical analysis.

The formula for the two-particle inclusive probability used in [84}87,180] reads

P
2
(k

1
, k

2
)"Pd4x

1Pd4x
2
g(x

1
, k

1
)g(x

2
, k

2
)[1#cos((k

1
!k

2
)(x

1
!x

2
))] , (5.7)

while Ref. [89] uses the more correct formula

P
2
(k

1
, k

2
)"Pd4x
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1
!k

2
)(x

1
!x

2
))] .

(5.8)

(From Eq. (5.8) one gets for the second-order correlation function Eq. (4.58).) It is found in [89] that
two rather surprising properties of the two-photon correlation function presented in [84] are
artefacts of inappropriate approximations in the evaluation of space}time integrals. In [84], it has
been claimed that the BEC function in the longitudinal direction (a) oscillates and (b) takes values
below unity. As property (b) is inconsistent with general quantum statistical bounds, it was
important to clarify the origin of this discrepancy. On the other hand, it has been con"rmed in [89]
that the correlation function in the transverse direction does exhibit oscillatory behaviour in the
out component of the momentum di!erence. Furthermore, in this reference a change of the BEC
function in *y from Gaussian to a two-component shape with decreasing transverse photon
momentum was found which may serve as evidence for the presence of a mixed phase and, hence, as
a QGP signature.

However even after correcting the wrong input BEC formula it is questionable whether the other
approximations made in Refs. [84}87,180,89] may not invalidate the above result. Besides the use
of a simpli"ed hydrodynamical solution one has to recall that (i) the Wigner formalism like the
more general classical current formalism, is limited to small momenta k of produced particles (no
recoil approximation), (ii) besides this general limitation to small k the Wigner formalism is useful
only for small di!erences of momenta q and for weak correlations between coordinates and
momenta, and (iii) although Eq. (4.58) does not su!er from the violation of unitarity disease
mentioned in Section 4.6 of Chapter 3, it is based on an approximation which makes it sometimes
inapplicable for photons (see Section 4.5).

From the above discussion one may conclude that the experimental problems of photon BEC
are matched by theoretical problems yet to be solved.

5.2. Pion condensates

One of the most interesting phenomena related to Bose}Einstein correlations is the e!ect of Bose
condensates. The remarkable thing about this e!ect is that it is not speci"c for particle or nuclear

322 R.M. Weiner / Physics Reports 327 (2000) 249}346



66Recently a di!erent type of pion condensate, the disordered chiral condensate, has received much attention in the
literature. It has been argued [182] that such a condensate would lead to the creation of squeezed states.

physics, but occurs in various other chapters of physics like superconductivity and super#uidity.
Moreover, recently not only the condensation of a gas of atoms has been experimentally achieved
[185] but the quantum statistical coherence of these systems has been experimentally proven
through Bose}Einstein correlations [24]. The proposal to use BEC for the detection of condensates
was made a long time ago [59]. The more recent developments in heavy ion reactions have
made this subject of current interest. Already in experiments at the SPS (e.g., Pb#Pb at
E
"%!.

"160AGeV) secondary particles are formed at high number densities in rapidity space
[181] and in future experiments at RHIC and the LHC one expects to obtain even higher
multiplicities of the order of a few thousand particles per unit rapidity. If local thermal (but not
chemical) equilibrium is established and the number densities are su$ciently large, the pions may
accumulate in their ground state and a Bose condensate may be formed.66 A speci"c scenario for
the formation of a Bose condensate, namely, the decay of short-lived resonances, was discussed in
Ref. [183] where conditions necessary for the formation of a Bose condensate in a heavy ion
collision were investigated. In Ref. [183] it was found that if a pionic Bose condensate is formed at
any stage of the collision, it can be expected to survive until pions decouple from the dense matter,
and thus it can a!ect the spectra and correlations of "nal state pions.

In Ref. [184] one investigated the in#uence of such a condensate on the single inclusive cross
section and on the second-order correlation function of identically charged pions (Bose}Einstein
correlations BEC) in hadronic reactions for expanding sources. A hydrodynamical approach was
used based on the HYLANDER routine. The Bose}condensate a!ects the single inclusive mo-
mentum distributions EdN/d3k, the momentum-dependent chaoticities p and the Bose}Einstein
correlation functions C

2
only over a limited momentum range. This is due to the fact that in

a condensate there exists a maximum velocity (which implies also a maximum momentum
di!erence q

.!9
) and leads to a very characteristic structure in single and double inclusive spectra.

In Fig. 18 the results of the numerical evaluations of the single inclusive momentum distributions
E(dN/d3k), the momentum-dependent chaoticities p and the Bose}Einstein correlation functions
C

2
are shown for a spherically and for a longitudinally expanding source. The presence of

a Bose}condensate of only 1% results in a decrease of the intercept by about 15%. Furthermore
due to a limited value of q

.!9
a part of the tail of the two-particle correlation functions is not

a!ected by the pionic Bose-condensate and a peak appears. To what extent such peaks can be
observed in experimental data depends among other things on the size of the source, the details of
the freeze-out, the width of the momentum distribution in the bosonic ground state, and detector
acceptance.

Plasma droplets? If the phase transition from hadronic matter to QGP and vice versa is of "rst
order then one could expect the formation of a mixed phase, in which QGP and hadronic matter
coexist. Such a mixed phase manifests itself in the hydrodynamical evolution of the system [186]
and it in#uences among other things the transverse momentum distribution of photons as seen in
Section 5.1.6. It was suggested by Seibert [187] that the mixed phase could also lead to a granular
structure which might be seen in the #uctuations of the velocity distributions of secondaries
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Fig. 18. Single inclusive spectra, momentum dependent chaoticities and two-particle BE correlation functions for
a spherically and a longitudinally expanding source. The di!erent line styles correspond to di!erent condensate densities
n
#0

compared to the thermal number densities n
5)

. kn is the pionic chemical potential (from Ref. [184]).

67The multiplicity distribution will be denoted sometimes in the following also by MD.

produced in the hadronisation stage. Pratt et al. [188] (see also [189] proposed subsequently that
in Bose}Einstein correlations, too, one might see a signature of this granularity.

6. Correlations and multiplicity distributions

6.1. From correlations to multiplicity distributions

An important physical observable in multiparticle production is the multiplicity distribution67
P(n), i.e., the probability to produce in a given event n particles. The link between the multiplicity
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68This is, e.g. the case where MD are measured with no proper identi"cation of the particles, while BEC refer of course
to identical particles. Thus the UA5 experiment [191], which discovered the violation of KNO scaling in MDs, measured
only charged particles, without distinguishing between positive and negative charges. However, the rapidity region
accessible in this experiment was much broader than the corresponding region in the UA-1 experiment [192] where
correlation measurements were performed and where a distinction between positive and negative charges could be made.

distribution P(n) and BEC is represented by the density matrix o, since it is the same o which
appears in the de"nition of P(n):

P(n),SnDoDnT (6.1)

and the de"nition of correlation functions (see e.g. Eq. (4.4)). Usually, one expresses o in terms of the
P(a) representation (see Section 2.2) and by using for P(a) simple analytical expressions one is able
to derive the most characteristic forms of P(n) in an analytical form, like the Poisson or the negative
binomial representation (see e.g. [5]).

There exist however physically interesting cases where no analytical expression for the multipli-
city distribution P(n) exists, but instead the moments of P are given.

From the phenomenological point of view the approach to MD via moments presents sometimes
important advantages because it allows the construction of an ewective density matrix from the
knowledge of a few physical quantities like the correlation lengths and mean multiplicity, which in
turn can be obtained from experiment (see e.g. [190]). In the following we will address this aspect of
the problem, especially since in this way the link between correlations and MD becomes clearer.

We start by recalling some de"nitions. Besides the normal moments of the MD given by

SnqT,+
n

P(n)nq , (6.2)

one uses frequently the factorial moments

U
q
,+

n

P(n)(n(n!1) )2 ) (n!q#1)) . (6.3)

These can be expressed in terms of the inclusive correlation functions o
q

through the relation

U
q
"PX

du
12PX

du
q
o
q
(k

1
,2, k

q
)"T

n!
(n!q)!U . (6.4)

Eqs. (6.3) and (6.4) illustrate the fundamental fact that the inclusive cross sections o
q

and thus the
correlation functions determine the moments of the MD, which are nothing but the integrals of o

q
.

Although this relation between moments of MD and correlation functions is a straightforward
aspect of multiparticle dynamics, the connection between MD and correlations has often been
overlooked. This is in part due to the fact that measurements of correlations are, for reasons of
statistics and other technical considerations, frequently performed in di!erent (narrower) regions of
phase space than measurements of MD.68 However the importance of the use of the relationship
between MD and correlations can hardly be overemphasised, just because of the di!erent experi-
mental methods used in the investigation of these two observables. In the absence of a theory of
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69This scale is the correlation length m of Eqs. (2.24) or (2.25).
70The UA5 data refer to a mixture of equal numbers of positive and negative particles; this dilutes the BEC e!ect.
71This last observation also supports the idea that BEC is the determining factor in intermittency because the

integration over transverse momentum implied by a one-dimensional y investigation diminishes the BEC.

multiparticle production, the form of the correlators and the amount of chaoticity are unknown
and have therefore to be parametrised and then determined experimentally in correlation experi-
ments. Both the parametrisation and the measurements are a!ected by errors. Similar consider-
ations apply for MD, but because of the di!erent experimental conditions under which correlation
measurements and MD measurements are made, the corresponding errors are di!erent. (See also
the discussion of the importance of higher-order correlation, Section 2.2.1.) Therefore from
a phenomenological and practical point of view, MD and correlations are rather complimentary
and have to be interpreted together. In the following we will exemplify the usefulness of this point
of view.

6.1.1. Rapidity dependence of MD in the stationary case
The dependence of moments of multiplicity distributions P(n) on the width of the bins in

momentum or rapidity space has been in the centre of multiparticle production studies for the last
15 years. It got much attention after: (1) the experimental observation [191] by the UA5
collaboration that the normalised moments of P(n) in the rapidity plateau region increase with the
width of the rapidity window *y; (2) the proposal by Bialas and Peschanski [193] that this
behaviour, which at a "rst look was power like may re#ect `intermittencya, i.e. the absence of
a "xed scale in the problem, which could imply that self-similar phenomena play a role in
multiparticle production.

However soon after this proposal was published it was pointed out in [194] that the quantum
statistical approach, presented in Section 2.2 and which implies a xxed scale,69 predicts a similar
functional relationship between the moments of MD and *y. In Fig. 19 from [194] some examples
of this behaviour are plotted and compared with experimental data. For small !dy
the (semilogarithmic) plot can be approximated by a power function as indicated by the data.
Recalling that the QS formalism applies to identical particles, it follows that BEC could be at the
origin of the so-called intermittency e!ect. This point of view was corroborated subsequently also
in [195,196] and was con"rmed experimentally by the observation that the `intermittencya e!ect
is strongly enhanced when identical particles are considered70 and/or when studied in more than
one dimension.71 For a more recent very clear con"rmation of this point of view refer to the studies
by Tannenbaum [197]. Further developments related to `intermittencya will be discussed in
Section 6.3.

6.1.2. Rapidity dependence of MD in the non-stationary case
The assumption of translational invariance in rapidity permitted to apply the quantum optical

formalism, in which time has the analogous property, to MD and led to a simple interpretation of
the observed broadening of the MD with the decrease of the width of the rapidity window in
high-energy reactions. However stationarity in rapidity is expected to hold only in the central
region (and only at high energies). Indeed experimental data on proton(antiproton)}proton
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Fig. 19. Normalised factorial moments U
q

of order q in "nite (pseudo)rapidity windows of width dy around y
CMS

"0,
plotted against dg (from Ref. [194]).

72For a microscopic interpretation of this e!ect in terms of a partonic stochastic model, see Ref. [199].

collisions in the energy range 52(Js(540 GeV show that if one considers shifted rapidity bins
along the rapidity axis the MD in these bins depend on the position of the bin: in the central region
the MD is broader and can be described by a negative binomial distribution while in the
fragmentation region it is narrower and can be described by a Poisson MD [198]. The mean
multiplicity in the central region increases faster (approximately like s1@4) with the energy than
in the fragmentation region. This was interpreted in [198] as possible evidence for the existence of
two sources, one of chaotic nature localised in the central region and another coherent in the
fragmentation region. This interpretation is in line with the folklore that gluons which interact
stronger (than quarks) form a central blob which may be equilibrated, while the fragmentation
region is populated by throughgoing quarks associated with the leading particles.72

A few years later the NA35-collaboration [200] measured BEC in 16O}Au reactions at
200GeV/nucleon in a relatively broad y region and found evidence for a larger and more chaotic
source in the central rapidity region, and a smaller and more coherent source in the fragmentation
region. It was then natural to correlate (see Ref. [28]) the two observations, i.e. that referring to MD
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73For various caveats concerning the analysis of BEC and MD data see Refs. [200,191,198,28,60,201].

and that referring to BEC. Taken together the credibility of the conjecture made in Ref. [198] is
strongly enhanced, just because we face here di!erent physical observables and di!erent experi-
ments, each with its own speci"c corrections and biases. Moreover it was pointed out in [28] that
experiment [200] did not necessarily imply that the two sources were independent, but could also
be interpreted as due to a single partially coherent source.

Indeed consider in a simpli"ed approach as used, e.g. in quantum optics a superposition n
of two "elds one coherent denoted by n

#
and another chaotic denoted by n

#)
so that

n"n
#
(k(1)

M
)#n

#)
(k(2)

M
) and Q

M
"k(1)

M
!k(2)

M
. Assuming boost invariance the correlator depends

only on k
M

and we have for the second-order correlation function
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where the transverse `radiusa R
M

plays the role of the correlation length and

p"SDn
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TD2T/(Dn
#
D2#SDn

#)
TD2T) .

Assume now that the chaoticity p is rapidity dependent so that in one rapidity region, denoted by
(A), p(A)+1. In that region then the third term in Eq. (6.5) dominates, i.e.

C
2
+1#p2(A)e~Q

2
MR

2
M (A) . (6.6)

In the parametrisation used in [200], according to which we have two independent sources, this
suggests that the e!ective radius of source A is R

M
(A). Conversely, for the more coherent region

denoted by B, p(B) is small and C
2

reads

C
2
+1#2p(B)(1!p(B))e~Q

2
MR

2
M (B)@2 (6.7)

with an e!ective radius R
M
(B)/J2(R

M
(A).

This corresponds qualitatively to the observations made in Ref. [200]. Unfortunately, these
observations have not yet been con"rmed by another, independent experiment so that the reader
should view these considerations with prudence.73 In any case they prove the usefulness of a global
analysis which incorporates both BEC and MD. On the other hand, a dedicated simultaneous
investigation of the rapidity dependence of these two observables appears very desirable.

6.1.3. Energy dependence of MD and its implications for BEC; long-range yuctuations in BEC and MD
This subject has been discussed recently in [202]. Besides the rapidity dependence, the depend-

ence of MD on the centre of mass energy of the collision, Js, constitutes an important topic in the
study of high-energy multiparticle production processes. This energy dependence is usually
discussed in terms of the violation [191] of KNO scaling [203]. KNO scaling implies that the
normalised moments SnmT/SnTm are constant as a function of s (for high energies, i.e. large SnT,
these moments coincide with the normalised factorial moments). For charged particles it turned
out that while KNO scaling is approximately satis"ed over the range of ISR energies
(20GeV4Js460GeV), it is violated if one goes to SPS-Collider energies (200GeV4

Js4900GeV), i.e. one "nds a considerable increase of multiplicity #uctuations with increasing
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74The importance of making this distinction was pointed out, among other things, in [204,205]. In [206] rapidity
correlations were measured for events at "xed multiplicity in order to get rid of the e!ect of LRC.

75The e!ect of LRC on BEC was discussed in Ref. [208], where several models speci"c for nucleus}nucleus collisions
were considered, but at that time no evidence for this e!ect could be found.

76For higher-order correlations the equivalent of property (II) is C
m
'm! (see also below). The values of C

m
(k,2, k)

for m'2 are apparently not yet available.

energy. In the following, we will show how BEC can be used to understand the origin of this
s-dependence. To do this, one needs to distinguish between long-range (dynamical) correlations
(LRC) and short-range correlations (SRC).74 For identical bosons, one important type of SRC are
BEC which re#ect quantum statistical interference. In addition, there exist dynamical SRC like
"nal state interactions, which however are quite di$cult to be separated from BEC. Up to 1994 one
usually assumed that LRC do not play an important part in BEC measurements (see however
[195,196]) in the sense that for Q'1GeV the two-particle correlation functions do not signi"-
cantly exceed unity.

However in Ref. [202] evidence, based on observational data, was presented showing that this is
not the case and that new and important information about LRC is contained in the BEC data
obtained by the UA1-Minimum-Bias Collaboration [192]. In principle, the observed increase of
multiplicity #uctuations with Js could be due to a change of the SRC as seen in BEC, i.e. of the
chaoticity and radii/lifetimes. This possibility was discussed in [207] but could not be tested
because of the lack of identical particle data for multiplicity distributions at Collider energies. At
that time only the UA5 data [191] for multiplicity distributions of charged particles were available.
Furthermore, up to this point, the e!ect of LRC had only been studied in terms of two-particle
correlations as a function of rapidity di!erence, i.e. in one dimension. With the advent of the
newly analysed UA1 data [192] for identical particles in three dimensions (essentially in
Q2"!(k

1
!k

2
)2) this situation changed. The analysis of [202] led to the conclusion of the

existence in BEC data of long-range #uctuations in the momentum space density of secondaries
and to the realisation that the increase with energy of multiplicity #uctuations is to a great extent
due to an increase of the asymptotic values of the m-particle correlation functions C!4:.15.

m
, i.e. their

values in the limit of large momentum di!erences where BEC do not play a role.75
In Ref. [192], the UA1 collaboration presents the two-particle correlation of negatively charged

secondaries as a function of the invariant momentum di!erence squared Q2"(k
1
!k

2
)2!

(E
1
!E

2
)2. The data (see Fig. 20) have two unusual features: (I) at large Q2 the correlation function

saturates above unity, and (II) at small Q2 it takes on values above 2. The higher-order correlation
functions also exhibit property (I) [192].76 By comparing the asymptotic values of the correlation
functions at large momentum di!erences C!4:.15.

m
(m"2,2, 5), with the normalised factorial

moments, /
m
,Sn(n!1) )2 ) (n!m#1)T/SnTm in the momentum space region DyD43, k

M
'

0.15GeV one "nds that the contribution of the BE interference peak to the moments is negligible
for such large rapidity windows. Herefrom one concludes in [202] that (I) indicates the presence of
LRC in the momentum space density of secondary particles and that it is quite plausible (see below)
that (II) has to a great extent the same explanation. We sketch here the arguments of Ref. [202].

In general, LRC may be related to #uctuations in impact parameter or inelasticity, or #uctu-
ations in the number of sources. In what follows, let us label these #uctuations by a parameter a.
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Fig. 20. Second-order correlation function for negative particles at Js"630GeV (from Ref. [202]).

The m-particle Bose}Einstein correlation function at a "xed value of a is given by

C
m
(k

1
,2, k

m
Da)"o

m
(k

1
,2, k

m
Da)/o

1
(k

1
Da) )2 ) o

1
(k

m
Da) , (6.8)

where ol (k1
,2, kl Da) are the l-particle inclusive distributions.

The #uctuations in a are described by a probability distribution h(a) with

Pda h(a)"1 . (6.9)

If the experiment does not select events at "xed a, the measured inclusive distributions are

o
m
(k

1
,2, k

m
)"So

m
(k

1
,2, k

m
Da)T , (6.10)

where the symbol S2T denotes an average over the #uctuating parameter a, i.e.

SX(a)T,P da h(a)X(a) (6.11)

The m-particle correlation function at the intercept reads

C
m
(k,2, k)"m! SamT/SaTm , (6.12)

where the symbols S T refer to averaging with respect to h(a). At large momentum di!erences one
has

C
m
(k

1
,2, k

m
)PSamT/SaTm"C!4:.15.

m
for Dk

i
!k

j
DPR (iOj, i, j"1,2, m) , (6.13)

i.e., the m-particle correlation functions can have intercepts above m! and saturate at values above
unity for large momentum di!erences.
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77Herefrom the name `intensity interferometrya.

The most obvious candidate for the function h(a) is the inelasticity distribution which describes
the event-to-event #uctuations of the inelasticity K. With the identi"cation a,Sn(K)T, where
Sn(K)T is the mean multiplicity at inelasticity K, one obtains from the above considerations a "rst
`experimentala information about this important physical quantity at Collider energies. Previous
experimental information about this distribution was derived in [209] from the data of Ref. [210]
at JsK17GeV.

The conclusions obtained in [202] about LRC are based among other things on the di!erent
normalisations used in di!erent experiments. Some tests related to these conclusions are proposed:

f Analysis of BEC at lower energies (NA22 range) as well as at Js"1800GeV with the same
normalisation as that used by the UA1 Collaboration. The values of C

2
at Q2'1 GeV2 and

possibly also at very small Q2 obtained in this way should exceed those obtained with the "xed
multiplicity normalisation in the same experiments. The following inequalities for
C

2
(Q2'1 (GeV)2), should be observed if this normalisation is used:

C
2
(NA22)(C

2
(UA1)(C

2
(Tevatron) .

f Analysis of BEC at UA1 energies with the same normalisation as that used so far by the NA22
and Tevatron groups ("xed multiplicity). The enhancement of C

2
at large Q (and possibly also at

small Q) observed so far, should disappear to a great extent.

6.2. Multiplicity dependence of Bose}Einstein correlations

The operators for the "eld (intensity) and number of particles do not commute. This means that
measurements of `ideala BEC can be performed only when no restriction on the multiplicity n,
which #uctuates from event to event, is made. In practice, however, very often such restrictions are
imposed, either because of technical reasons or because of theoretical prejudices. To the last
category belong considerations imposed by the search for QGP in high-energy heavy ion reactions.
Thus one expects that by selecting events with n5n

.*/
, where n

.*/
is in general an energy-

dependent quantity, one gets information about the interesting `centrala collisions.
Another reason why multiplicity constraints are of practical importance for QGP experiments is

the need to compare various QGP signals in a given event and at the same time determine for that
event the radius, lifetime and chaoticity of the source, among other things in order to be able to
estimate the energy density achieved in that event. This means that for QGP search it is interesting to
perform interferometry measurements for single events, which of course have a given multiplicity.

For these reasons the investigation of the multiplicity dependence of BEC constitutes an
important enterprise which we shall address in the following section.

6.2.1. The quantum statistical formalism
Correlation functions de"ned in quantum statistics and used in quantum optics refer to ensemble

averages of intensities77 I of "elds n, where

I(k
M
, y)"Dn(k

M
, y)D2 . (6.14)

R.M. Weiner / Physics Reports 327 (2000) 249}346 331



78The approach of [176] combines simpli"ed (1-D) hydrodynamics with a multiple scattering model, which also
exploits the impact parameter dependence.

The total multiplicity n of identical particles over a given phase space region is given by

n"P dk2
MPdyDn(k

M
, y)D2 . (6.15)

Both the "eld n(k
M
, y) and the intensity I(k

M
, y) are stochastic variables. Averaging over an

appropriate ensemble, we get the mean total multiplicity

SnT"Pdk2
MPdySDn(k

M
, y)D2T . (6.16)

In [211] the dependence of BEC within the QS formalism on the total multiplicity n and on
n
.*/

was investigated and it was found that the size of this e!ect is (especially at low SnT)
surprisingly large and must not be ignored, as had been done before. Both the n

.*/
constraint and

the SnT constraint lead to a decrease of the correlation function C
2

at "xed y
g
"y

1
!y

2
, i.e. to an

antibunching e!ect. The last e!ect can be approximated, except for very large n and small y
g

by
a simple analytical formula

C(n)
(2)

(y
g
)+C

(2)
(y

g
)(n!1)/nf

2
, (6.17)

where Cn
2

denotes the correlation function at "xed n and f
2

is the reduced factorial moment.
These results show that BEC parameters like radii, lifetimes, and chaoticity do depend on the

particular experimental conditions under which the measurements are performed.
It is worth mentioning that a multiplicity dependence of BEC was observed experimentally for p}p and a}a reactions at

E
cm
"53 and 31GeV, respectively already in [212]. There it was found that the transverse radius increases with the

multiplicity of charged particles n
#)!3'%$

. This e!ect was interpreted by Barshay [213] to be a consequence of the impact
parameter dependence. The same e!ect was seen in heavy ion reactions [200] and got a similar interpretation in [176].78
The interpretation in terms of impact parameter dependence could be checked directly in heavy ion reactions since here
the impact parameter can be determined on an event-by-event basis.

Another mechanism for the increase of radius with multiplicity was proposed by Ryskin [214]. He pointed out that in
high multiplicity events, which many authors associate with large transverse momenta of partons and thus with a regime
where perturbative QCD applies, one expects that the size of the hadronization region should increase with the

multiplicity like Jn.

A related topic is the dependence of BEC on the rapidity density d"*n/*y, which has also been
observed experimentally in p6 }p reactions at the CERN SPS Collider [215] and at the Fermilab
tevatron [216]. Using a parametrisation

C
2
"1#j exp(!R2Q2) , (6.18)

where Q is the invariant momentum transfer, it was found that R increased with d while j decreased
with d. This last observation is compatible with the results from [211]; a more quantitative
comparison would be possible only if, among other things, the data were parametrised in a way
more consistent with quantum statistics. Thus the four momentum di!erence Q is not an ideal
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79 In [217] the clumping in phase space due to Bose symmetry was also illustrated.
80The same interpretation of the multiplicity dependence of BEC was given in [211]. In this reference the nature of the

`fakea coherence induced by "xing the multiplicity is even clearer, as one studies there explicitly coherence in a consistent
quantum statistical formalism.

variable for BEC (see Section 2.1.5) and the coherence e!ect has to be taken into account as
outlined in Section 2.2 and not by the simple empirical j factor.

6.2.2. The wave-function formalism; `pasersa?
The dependence on total multiplicity of BEC was investigated also within the wave-function

formalism. In Section 2.1 where the GGLP theory was presented it was pointed out that the
wave-function formalism may be useful for exclusive processes or for event generators. Indeed, in
a "rst approximation, the wave function t

n
of a system of n identical bosons, e.g. can be obtained

from the product of n single-particle wave functions t
1

by symmetrisation. Then the calculation of
C(n)

(2)
is in principle straightforward and follows the lines of GGLP.

However, when the multiplicities n become large (say n'20) the explicit symmetrisation of the
wave-function formalism becomes di$cult. This leads Zajc [217] to use numerical Monte Carlo
techniques for estimating n particle symmetrised probabilities, which he then applied to calculate
two-particle BEC. He was thus able to study the question of the dependence of BEC parameters on
the multiplicity. For an application of this approach to Bevalac heavy ion reactions, see [218].
Using as input a second-order BEC function parametrised in the form (6.18) in Ref. [217] it was
found (and we have seen above that this was con"rmed in [211],) that the `incoherencea parameter
j decreased with increasing n.79

This of course does not mean that events with higher pion multiplicities are denser and more
coherent. On the contrary, Ref. [217] concluded that the above results have to be used in order to
eliminate the bias introduced by this e!ect into experimental observations.80

The authors of [219,220] however did not share this opinion. Ref. [219] went even so far as to
deduce the possible existence of pionic lasers from considerations of this type.

Ref. [219] starts by proposing an algorithm for symmetrising the wave functions which presents
the advantages that it reduces the computing time very much when using numerical techniques,
which is applicable also for Wigner-type source functions and not only plane wave functions, and
which for Gaussian sources provides even analytical results. Subsequently in Ref. [221] wave
packets were symmetrised and in special cases the matrix density at "xed and arbitrary n was
derived in analytical form. This algorithm was then applied to calculate the in#uence of symmet-
risation on BEC and multiplicity distributions. As in [217] it is found in [219] that the symmetrisa-
tion produces an e!ective decrease of the radius of the source, a broadening of the multiplicity
distribution P(n) and an increase of the mean multiplicity as compared to the non-symmetrised
case. What is new in [219] is (besides the algorithm) mainly the meaning the author attributes to
these results.

In a concrete example Ref. [219] considers a non-relativistic source distribution S in the absence
of symmetrisation e!ects:

S(k,x)"[1/(2pR2m¹)3@2]exp(!(k
0
/¹)!(x2/2R2))d(x

0
) (6.19)
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81For lasers the determining dynamical factor is among other things the inversion.

where

k
0
/¹"k2/2D2 . (6.20)

Here ¹ is an e!ective temperature, R an e!ective radius, m the pion mass and D a constant with
dimensions of momentum.

Let g
0

and g be the number densities before and after symmetrisation, respectively. In terms of
S(k,x) we have

g
0
"PS(k,x) d4k d4x (6.21)

and a corresponding expression for g with S replaced by the source function after symmetrisation.
Then one "nds [219] that g increases with g

0
and above a certain crtitical density g#3*5

0
, g diverges.

This is interpreted in Ref. [219] as `passinga.
The reader may be rightly puzzled by the fact that while g has a clear physical signi"cance the

number density g
0

and a fortiori its critical value have no physical signi"cance, because in nature
there does not exist a system of bosons the wave function of which is not symmetrised. Thus
contrary to what is alluded to in Ref. [219], this paper does not address really the question how
a condensate is reached. Indeed the physical factors which induce condensation are, for systems in
(local) thermal and chemical equilibrium,81 pressure and temperature and the symmetrisation is
contained automatically in the distribution function

f"1/[exp[(E!k)/¹]!1] (6.22)

in the term !1 in the denominator; E is the energy and k the chemical potential.
To realise what is going on it is useful to observe that the increase of g

0
can be achieved by

decreasing R and/or ¹. Thus g
0

can be substituted by one or both of these two physical quantities.
Then the blow-up of the number density g can be thought of as occurring due to a decrease of
¹ and/or R. However this is nothing but the well-known Bose}Einstein condensation phenom-
enon. While from a purely mathematical point of view the condensation e!ect can be achieved also
by starting with a non-symmetrised wave function and symmetrising it afterwards `by handa, the
causal, i.e. physical relationship is di!erent: one starts with a bosonic, i.e. symmetrised system and
obtains condensation by decreasing the temperature or by increasing the density of this bosonic
system.

Another confusing interpretation in [219] relates to the observation made also in [217] that the
symmetrisation produces a broadening of the multiplicity distribution (MD). In particular, starting
with a Poisson MD for the non-symmetrised wf one ends up after symmetrisation with a negative
binomial. This is a simple consequence of Bose statistics, and must not be associated with the
so-called pasing e!ect. In fact for true lasers the opposite e!ect takes place. Before `condensinga, i.e.
below threshold their MD is in general broad and of negative binomial form corresponding to
a chaotic (thermal) distribution while above threshold the laser condensate is produced and as such
corresponds to a coherent state and therefore is characterised by a Poisson MD. Last but not least
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82For a model of directional coherence, not necessarily related to pion condensates, see [222]; experimental hints of
this e!ect have possibly been seen in [223].

83For another investigation of the e!ect of symmetrization on the single inclusive cross section cf. [224,225]. In [225]
second-order correlation functions are also considered (see also Ref. [226] for this topic).

the fact that this broadening increases with n is not, as suggested in [219,220], due to the approach
to `lasing criticalitya, but simply to the fact that the larger the n, the larger the number of
independent emitters is and the better the central limit theorem applies. This theorem states (see
Section 2.2) that the "eld produced by a large number of independent sources is chaotic.

Finally a terminological remark appears necessary here. We believe that names like `pasera or
pionic laser used in the papers quoted above are unjusti"ed and misleading. The only characteristic
which the systems considered in these papers possibly share with lasers is the condensate property,
i.e. the bunching of particles in a given (momentum) state. However lasers are much more than just
condensates; one of the main properties of lasers which distinguishes them from other condensates
is the directionality, a problem which is not even mentioned in the `pasera literature.82,83

6.3. The invariant Q variable in the space}time approach: higher-order correlations;
`intermittencya in BEC ?

The issue of apparent power-like rapidity dependence of moments of MD was discussed in
Section 6.1.1 where it was pointed out that this dependence could in principle be understood within
the QS formalism without invoking the idea of intermittency. However this was not the end of the
story because: (1) it was observed [192] that the power-like behaviour extends also to BEC data
(in the invariant variable Q). This was surprising because up to that moment BEC data could
usually be "tted by a Gaussian or exponential function, albeit these data did not extend to such
small Q values as those measured in [192]; 2) Bialas [227] (see also [228,229]) proposed that the
source itself has no "xed size, but is #uctuating from event to event with a power distribution of
sizes. Since the measurements made in [192] were in the invariant variable Q rather than *y, one
had to understand whether the QS approach which implies "xed scales does not lead to a similar
behaviour in Q.

Refs. [230,231] addressed this question and proved that, indeed, by starting from a space}time
correlator with a "xed correlation length and a source distribution with a "xed radius, one gets
after integrations over the unobserved variables a correlation function which is power like in
a limited Q range.

In the following, we shall sketch how this happens. The two-particle Bose}Einstein correlation
function is de"ned as

C
2
(k

1
, k

2
)"o

2
(k

1
, k

2
)/[o

1
(k

1
) ) o

1
(k

2
)] (6.23)

where o
1
(k) and o

2
(k

1
, k

2
) are the one- and two-particle particle inclusive spectra, respectively.

The two-particle correlation function projected on Q2 is

C
2
(Q2)"1#(I

2
(Q2)/I

11
(Q2)) (6.24)
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Fig. 21. C
2
(Q2) for the static source model (dashed line) and for the expanding source model (solid line) compared to the

UA1 data. The dotted line shows a power-law "t (from Ref. [230]).

84The C
2
(Q2) data of [192] were normalised so that at large Q2, C

2
(Q2)+1. An explanation for the experimental

observation of [192] that C
2
(Q2) exceeds by a multiplicative factor of &1.3 both the upper and lower `conventionala

limits of 2 and 1, respectively, is discussed in Ref. [202].

with the integrals
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where du,d3k/(2n)32E is the invariant phase space volume element. Two types of sources, a static
one and an expanding one, were considered (cf. Section 4.8). The parameters employed are
physically meaningful quantities in the sense that they give the lifetime, radii and correlation
lengths of the source. This is not the case for the ad hoc parametrisation of C

2
(Q2), e.g., with

a Gaussian

C
2
(Q2)"1#j

Q
e~R

2
QQ

2 . (6.26)

To illustrate the behaviour of the correlation function as a function of Q2, one applied the
formalism to describe UA1 data in the phase space region DyD43.0 and k

M
5150 MeV. In

[230,231] C
2
(Q2) was calculated for the static and for the expanding source by Monte Carlo

integration (for the static source, approximate analytical results could be obtained only for
DyD'1.5, where they agree with the numerical results [231]). Fig. 21 shows the results of "ts to the
UA1 data84 for the static source (dashed line) and for the expanding source (solid line), which were
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85The older UA-1 data [31] were limited to larger Q2 values. Furthermore, the quantum statistical interpretation [32]
of these data is di!erent from that in [230], which is based on space}time concepts. This explains the di!erent values of
chaoticity obtained in [230,231], on the one hand and in Refs. [31,32] on the other hand.

86A similar point of view is expressed in [232] for the particular case of bremsstrahlung photons.

obtained under the assumption of a purely chaotic source, p
0
"1 (the data are consistent with an

amount of 410% coherence,85 but the sensitivity to p
0

was not su$cient to further constrain the
degree of coherence within these limits). For comparison, the result of a power law "t (dotted line)
as suggested in Ref. [192]

C
2
(Q2)"a#b ) (Q2/1GeV2)~( (6.27)

is also plotted.
One "nds that the data can be well described both with the static and the expanding source

model with reasonable values for the radii, lifetime and correlation length.
The results of above show that the power-like behaviour of C

2
(the same holds for higher order

correlations) can be reproduced by assuming a conventional space}time source with "xed para-
meters, i.e., without invoking `intermittencya.86 This conclusion of [230] is strengthened by an
explicit consideration of resonances in [231].

The advantages of the QS formalism as compared with the wave-function formalism emerge
clearly also in the problem of higher-order correlations. In the QS formalism higher-order
correlations are treated on the same footing as lower-order ones and emerge just as consequences
of the form of the density matrix. Therefore questions found sometimes in the literature like
`what is the in#uence of higher-order correlations on the lower onea do not even arise in QS and in
fact do not make sense. We emphasised in Section 2.2.1 the importance of higher-order correlations
for the phenomenological determination of the form of the correlation function and this applies in
particular when a single variable like Q is used instead of the six independent degrees of freedom
inherent in the correlator. For this reason the space}time integration at "xed Q has been used
recently [35] also in the study of higher-order correlations and applied to the NA22 data [233]. It
was found among other things that an expanding source with "xed parameters as de"ned in
Section 4 can account for the data up to and including the fourth order, con"rming in a "rst
approximation the Gaussian form of the density matrix. The fact that previous attempts in this
direction like [233,34] met with di$culties may be due to the fact that in these two experimental
studies the QO formalism in momentum space was used and possibly also because no simultaneous
"t of all orders of correlations was performed, as was the case in [35].

7. Critical discussion and outlook

For historical reasons related to the fact that the GGLP e!ect was observed for the "rst time in
annihilation at rest when (almost) exclusive reactions were studied, the theory of BEC was initially
based on the wave-function formalism. This formalism is not appropriate for inclusive reactions in
high-energy physics, among other things because it yields a correlation function which depends
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only on the momentum di!erence q and not also on the sum of momenta, it does not take into
account isospin, and cannot treat adequately coherence. This last property is essential as it leads to
one of the most important applications of BEC, i.e. to condensates. Furthermore, this property
strongly a!ects another essential application of BEC, namely the determination of sizes, lifetimes,
correlation lengths and correlation times of sources. The ad hoc parametrisation of the correlation
function under the form (2.8) where j is supposed to take into account (in)coherence is unsatisfac-
tory. An improvement based on an analogy with quantum optics leads to an additional term (with
the same number of parameters). A more complete and more correct treatment of BEC is provided
by the space}time formalism of classical currents.

Almost all studies of BEC assume a Gaussian density matrix. Possible deviations from this form
could and should be looked for by studying higher-order correlations.

The classical current approach is based on an exact solution of the equations of quantum "eld
theory and it can be considered at present the most advanced and complete description of BEC. It
introduces a primordial correlator of currents which is characterised by "nite correlation lengths
and correlation times. The geometry of the source is an independent property of the system and it is
here that the traditional radii and lifetimes enter. The form of the geometry and of the correlator is
not given by the theory and it is up to experiment to determine these.

For a Gaussian density matrix the space}time approach within the classical current formalism
leads to a minimum of 10 independent parameters; these include geometrical and dynamical scales
as well as the chaoticity. Phenomenologically, these scales can be separated only by considering
simultaneously single and double inclusive cross sections. Experimentally, this separation as well as
the determination of all parameters has not yet been performed and constitutes an important task
for the future. This should be done not only for particle reactions but also for heavy ion reactions, as an
alternative to the quasi-hydrodynamical approach which cannot provide this separation. It would also
be desirable to extend the parametrisation for an expanding source by dropping the assumption of
boost invariance.

Besides the conventional ## or !! pion correlations there exist also #! correlations,
which become important for sources of small lifetimes. These `surprisinga "eld theoretical
e!ects represent squeezed states, which unlike what happens in optics, appear in particle
physics `for freea. These e!ects can be used to investigate the di!erence between classical and
quantum currents. Their detection constitutes one of the most important challenges for future
experiments.

BEC are in#uenced by "nal state interactions. Coulomb "nal state interactions do not play
a major part except at very small q. These small values have apparently not yet been reached in
experiment and it is questionable whether they will be reached in the foreseeable future. In heavy
ion reactions this is due to the large values of radii which multiply q and even for typical scales of
1 fm the present resolution of detectors is not su$cient to make this e!ect very important.
Nevertheless, since Coulomb corrections have been studied so far only within the wave-function
formalism and usually by applying the SchroK dinger equation, it would be desirable to extend this
study by considering the Klein}Gordon equation which is more appropriate for mesons. Even
more interesting would be to study Coulomb corrections within the classical current formalism.

Resonances play an important part in "nal state interactions and progress has been achieved in
their understanding, in particular in heavy ion reactions, where their in#uence has been investi-
gated using solutions of the equations of hydrodynamics within the Wigner function formalism.
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87At present even for the same type of reaction di!erent normalisations are frequently used and this can lead to
apparently di!erent results, as exempli"ed in the case of NA22 and UA1 data. Tests for a better understanding and
elimination of these discrepancies have been proposed (see Section 6.1.3).

88Quasi-hydrodynamics as compared with hydrodynamics has the supplementary disadvantage that it does not allow
a separation between geometrical radii and correlation lengths. Moreover it does not have even the excuse of simplicity,
since the number of free parameters in the quasi-hydrodynamical approach is as large as that in the classical current
space}time approach.

BEC have been investigated in e`}e~, hadron}hadron and heavy ion reactions; however
a systematic comparison of results using the same parametrisation and normalisation is yet to
be done.87

Correlations are intimately related to multiplicity distributions which can serve as complement-
ary tools in the determination of the parameters of sources. Therefore a systematic investigation of
BEC and multiplicity distributions in the same phase space region is desirable. How useful this can
be has been shown by proving in this way the in#uence of long-range correlations on BEC.

BEC can be useful in heavy ion reactions and for the search of quark}gluon plasma if in
particular one of the two conditions is satis"ed:

(A) the investigation is based on full-#edged hydrodynamics, implying the solution of the
equations of hydrodynamics with explicit consideration of the equation of state.

(B) the investigation is based on the classical current space}time approach.
Case (A) has the advantage that the dependence of the equation of state on the phase transition

may be re#ected also in single inclusive cross sections and in the BEC. (So far, however, the
sensitivity of BEC on the equation of state has not yet been proven with present data [234].) It has
however the disadvantage that its applicability is restricted because it is based on the Wigner
function, which is a particular case of the classical current formalism, and which is useful only for
small q and not too strong correlations between momenta k and coordinates x.

Case (B) has the disadvantage that there is no contact with the equation of state. However it has
the advantage it is not restricted to small q and weak correlations between k and x.

Unfortunately, many of the theoretical papers on BEC in heavy ion reactions do not satisfy
either condition (A) or condition (B). This is the case with most of the quasi-hydrodynamical papers
which use a parametrisation of the source function based on qualitative hydrodynamical consider-
ations without the use of an equation of state and without solving the equations of hydrodynamics.
This quasi-hydrodynamical approach has the disadvantages of (A) and (B) but none of their
advantages.88

There are many yet unsolved problems in the investigation of BEC, some of them of theoretical,
but most of them of experimental nature (see also Ref. [235]).

While an analysis of the experimental BEC deserves a special review, some of the obvious
reasons for this unsatisfactory experimental situation are:

(1) Most of the BEC experiments performed so far use inadequate detectors, because they
are not dedicated experiments but rather by-products of experiments planned for other purposes.
What is needed among other things is track-by-track detection and improved identi"cation of
particles.

(2) Insu$cient statistics. An improvement of statistics especially at small q by at least one order
of magnitude is necessary to address some of the problems enumerated above.
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(3) Incorrect or incomplete parametrisations of the correlation functions. Very often and in part
because of (2) not all six independent variables of C

2
are measured, but projection of these. Very

popular among these projections is the relativistically invariant variable Q. This is not a good
variable for BEC studies, because among other things it mixes the space and time variables in an
uncontrollable way. Furthermore, in most parametrisations, coherence is not (or inadequately)
considered.

(4) Inadequate normalisations. Practically, all BEC experiments use a normalisation procedure
of the correlation function which does not correspond to its de"nition. This de"nition relates the
double (or higher order) inclusive cross section to the product of single inclusive cross sections and
not to an `uncorrelated backgrounda.

The solution of the problems mentioned above will make of boson interferometry what it is
supposed to be: a reliable method for the determination of sizes, lifetimes, correlation lengths, and
coherence of sources in subatomic physics.

A more pedagogical presentation of the theory of Bose}Einstein correlations, which discusses
also its quantum optical context, including a comparison between the HBT and the GGLP
e!ects and between photon and hadron intensity interferometry can be found in the book
by the author [5]. Some of the most representative theoretical and experimental papers on BEC
and which are frequently quoted within the present review have been reprinted in a single volume
in Ref. [236].
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